## Distributed Computing in Fusion Research

# EOSC Marketplace ask me anything webinar

Andrew Lahiff, United Kingdom Atomic Energy Authority















The EOSC Future, C-SCALE, DICE, EGI-ACE, OpenAIRE-Nexus and Reliance projects are funded by the European Union Horizon Programme calls INFRAEOSC-03-2020 and INFRAEOSC-07-2020.



#### Introduction

- Nuclear fusion
  - Energy source of the Sun & stars
  - Light nuclei fusing to form a heavier nucleus releases energy
- Recreating fusion on Earth
  - Typically heat deuterium & tritium to over 100 million degrees
  - Eventual aim is to use the energy produced to generate electricity for the grid
- Computing in Fusion
  - Plasma modelling, materials research, engineering, data processing, uncertainty quantification, rendering, machine learning, ...
- EGI-ACE: Integrating distributed clouds, HPC and storage













#### **Fusion use case in EGI-ACE**

- Example Fusion application: JOREK
  - Simulation of MHD instabilities at the edge of Tokamak plasma
  - Dynamics highly dependent on edge plasma pressure
- Resource requirements
  - High-fidelity: large numbers of CPUs with low-latency interconnects
  - On a single node: limited fidelity, limited physics















#### Fusion use case in EGI-ACE (cont'd)

- Building NN surrogate models in an efficient & effective manner
  - Traditional approach involves arbitrary scans across a range of a parameters
  - May be unaware of more complex behaviour & nuances
- An alternative approach to overcome these difficulties
  - Physics-informed neural network
  - Cyclic workflow
    - Gaps in knowledge identified
    - Trigger the simulation code to generate additional data points







#### **Fusion resources in EGI-ACE**

- Clouds
  - TUBITAK
  - University of Lille
  - CESGA
  - CESNET
- HPC

EOSC Future

- LIP
- Storage (OneData)

**C-SCALE** 

- TUBITAK
- CESNET

with



#### **PROMINENCE: Unifying access to resources**

- Platform which abstracts away multiple clouds & HPC clusters
  - Appears like a single batch-system to users
  - Users don't have to worry about provisioning clusters or infrastructure
  - Jobs are automatically directed to appropriate resources
  - Supports opportunistic usage of idle resources: improves efficiency



#### **PROMINENCE: In use**

• Example running a multi-node MPI job















### **Example results**

 Using a neural network (Fourier Neural Operator) to model the density, vorticity & potential from MHD simulations





#### • Next steps

- Initial results (above) used clouds only
- Next will use an HPC cluster via PROMINENCE















- Creating containers which perform optimally on multiple HPC clusters
- POSIX-like access to OneData not available on HPC clusters
  - Users aren't typically able to use FUSE
- HPC clusters with restricted outgoing internet access

























