D4.1a

Back-Office design, functional and technical specifications

The EOSC Future project is co-funded by the European Union Horizon Programme call INFRAEOSC-03-2020, Grant Agreement number 101017536.
**Abstract**

This document presents the initial specification of the functionalities, interactions (data flows and APIs), and resulting architecture of the EOSC Core back-office platform. A functional architecture was designed after an analysis of the main requirements gathered from the users of the back-office: providers of thematic or horizontal services and resources, portal or resource catalogue providers (thematic, regional, project-based, etc.), EOSC funders and other relevant stakeholders (e.g. the EC or the EOSC Association) and providers of the EOSC Portal front-office functionalities. Leveraging the functional architecture and the background components identified to implement its functions, a technical architecture was drawn, connecting such components through interfaces and APIs with the aim of creating a homogeneous and coherent EOSC Core back-office platform able to guarantee a uniform experience to its users. The specifications reported in this document are considered as the starting point for the WP4 design and development activities and will be improved during the project lifetime.
## Version History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Authors/Contributors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0.1</td>
<td>01/07/2021</td>
<td>Diego Scardaci (EGI Foundation), Paolo Manghi (OpenAIRE)</td>
<td>Initiation – Proposed ToC – First draft</td>
</tr>
<tr>
<td>V0.2</td>
<td>22/08/2021</td>
<td>Diego Scardaci (EGI Foundation), Paolo Manghi (OpenAIRE), George Papastefanatos (Athena), Bartosz Wilk (Cyfronet), Dimitris Pierrakos (Athena), Cyril L’Orphelin (CNRS), Alessia Bardi (CNR), Adrian Coveney (STFC), Kostas Koumantarous (GRNET), Pavel Weber (KIT), Themis Zamani (GRNET)</td>
<td>Full draft ready for internal review</td>
</tr>
<tr>
<td>V0.3</td>
<td>07/09/2021</td>
<td>Diego Scardaci (EGI Foundation), Paolo Manghi (OpenAIRE), George Papastefanatos (Athena), Bartosz Wilk (Cyfronet), Dimitris Pierrakos (Athena), Cyril L’Orphelin (CNRS), Alessia Bardi (CNR), Adrian Coveney (STFC), Kostas Koumantarous (GRNET), Pavel Weber (KIT), Themis Zamani (GRNET)</td>
<td>Full draft ready for external review</td>
</tr>
<tr>
<td>V0.9</td>
<td>25/09/2021</td>
<td>Diego Scardaci (EGI Foundation), Paolo Manghi (OpenAIRE),</td>
<td>Final draft</td>
</tr>
<tr>
<td>V1.0</td>
<td>30/09/2021</td>
<td>Diego Scardaci (EGI Foundation), Paolo Manghi (OpenAIRE), Ron Dekker (TGB), Mike Chatzopoulos (ATHENA)</td>
<td>Final Version submitted to EC</td>
</tr>
</tbody>
</table>

## Copyright Notice

This work by Parties of the EOSC Future Consortium is licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/). The EOSC Future project is co-funded by the European Union Horizon Programme call INFRAEOSC-03-2020, Grant Agreement number 101017536.
# Table of Contents

List of Abbreviations .................................................................................................................. 5

1 Executive Summary .................................................................................................................. 6

2 Introduction ............................................................................................................................... 7

3 Requirements for the EOSC Core Back-Office components and Functional Components .......... 8

  3.1 Stakeholders Requirements and Enabling Functional Components .................................. 8

  3.2 Requirements from the High-level Technical Roadmap .................................................... 10

4 Functional Architecture .......................................................................................................... 15

  4.1 Background Components and Overall Functional Architecture ...................................... 15

  4.2 EOSC Resource Catalogue ............................................................................................... 17

    4.2.1 EOSC Provider Portal ............................................................................................... 18

    4.2.2 The EOSC Research Graph Functions ...................................................................... 19

  4.3 EOSC Service Order Management & Composition ......................................................... 20

    4.3.1 Service Order Management ..................................................................................... 20

    4.3.2 Composition ............................................................................................................. 24

  4.4 EOSC and Open Science Statistics ................................................................................... 25

    4.4.1 Open Science Statistics ........................................................................................... 26

    4.4.2 EOSC Statistics ......................................................................................................... 26

    4.4.3 EOSC Accounting ...................................................................................................... 27

    4.4.3.1 Service Accounting .............................................................................................. 27

    4.4.3.2 Research Publications, Data and Software Accounting ..................................... 29

  4.5 Helpdesk .............................................................................................................................. 30

  4.6 EOSC Monitoring ............................................................................................................... 31

    4.6.1 EOSC Monitoring for Core services ......................................................................... 34

    4.6.2 EOSC Monitoring for Exchange services ................................................................ 34

  4.7 EOSC Messaging ................................................................................................................. 35

5 Technical Architecture ............................................................................................................ 37

  5.1 EOSC Resource Catalogue ............................................................................................... 37

    5.1.1 EOSC Research Graph (EOSC-RG) ......................................................................... 37

    5.1.1.1 Data model and Content ...................................................................................... 38

    5.1.1.2 APIs ................................................................................................................... 38

    5.1.2 EOSC Provider Portal ............................................................................................... 39

    5.1.2.1 Data model and actual content ............................................................................ 39

    5.1.2.2 User Interfaces ................................................................................................... 39

  5.2 EOSC Service Order Management & Composition .......................................................... 45

    5.2.1 Service Order Management Back-Office (SOMBO) ................................................ 46

    5.2.2 Order Management process adapters for existing Order Management Systems / reference Jira adapter ................................................................. 47

    5.2.3 Marketplace API for Order Management Systems .................................................. 48

  5.3 EOSC Statistics and Open Science Statistics ..................................................................... 49

    5.3.1 Open Science Monitor .............................................................................................. 50

    5.3.2 EOSC Metrics Portal ............................................................................................... 50

    5.3.3 EOSC Service Accounting ...................................................................................... 51

    5.3.3.1 Service Accounting ............................................................................................ 51

    5.3.3.2 EOSC Data Usage Statistics for research publications, data and software ........... 51
5.4 EOSC Helpdesk ........................................................................................................... 54
5.5 EOSC Monitoring ........................................................................................................... 56
  5.5.1 EOSC Monitoring for Core Services ..................................................................... 58
  5.5.2 EOSC Monitoring for Exchange Services ............................................................. 58
5.6 EOSC Messaging ......................................................................................................... 58
6 Initial gap analysis .......................................................................................................... 62
  6.1 Virtual Access Metrics ............................................................................................... 62
  6.2 Topology and Configuration Management Database ............................................ 62
  6.3 Composability and execution framework .................................................................. 63
7 Conclusion and Next Steps ............................................................................................ 64
References ........................................................................................................................ 65

Table of Figures
Figure 4.1: EOSC Core back-office platform functional architecture ................................. 17
Figure 4.2: The EOSC research graph data model .............................................................. 18
Figure 4.3: Order Management Interoperability Patterns .................................................. 21
Figure 4.4: Communication between the EOSC Marketplace, the users, the communities and providers, and the EOSC Portal operations team ........................................................................... 22

Table of Tables
Table 3-1: EOSC Core back-office features from stakeholder requirements .......................... 8
Table 3-2: EOSC Core Back-Office requirements per stakeholders ....................................... 9
Table 3-3: EOSC Core back-office enabling functional components and supported features .......... 10
Table 3-4: EOSC Future technical roadmap and EOSC Core back-office enabling functional components ...... 12
Table 4-1: EOSC Core back-office enabling functional components: functional requirements and background components ................................................................. 15
Table 4-2: EOSC provider portal and service catalogue functions: onboarding and management .......................................................... 18
Table 4-3: EOSC research graph functions: resources discovery and access ............................ 19
Table 4-4: Access and compose resources: service order management .................................... 22
Table 4-5: Access and compose resources: service order management .................................... 25
Table 4-6: EOSC and Open Science statistics: Open Science Statistics ................................. 26
Table 4-7: EOSC and Open Science statistics: Metrics Portal .............................................. 27
Table 4-8: EOSC and Open Science statistics: Service Accounting ....................................... 28
Table 4-9: EOSC and Open Science statistics: Research publications, data and software ......... 29
Table 4-10: EOSC Helpdesk ............................................................................................... 31
Table 4-11: EOSC Monitoring ............................................................................................. 32
Table 4-12: EOSC Messaging ............................................................................................. 35
Table 5-1: EOSC Enhance Service Registry technical features ........................................... 40
Table 5-2: EOSC Enhance Provider Portal technical features ............................................. 41
Table 5-3: OpenAIRE Research Graph technical features .................................................... 43
Table 5-4: OpenAIRE PROVIDE technical features ............................................................ 44
Table 5-5: EOSC Marketplace technical features ................................................................... 48
Table 5-6: OpenAIRE Open Science Observatory technical features ..................................... 50
Table 5-7: EOSC-Hub Metrics Portal technical features ....................................................... 50
Table 5-8: EOSC-Hub Accounting technical features .......................................................... 51
Table 5-9: OpenAIRE UsageCounts technical features ......................................................... 53
Table 5-10: EOSC-Hub Helpdesk technical features ............................................................ 55
Table 5-11: EOSC-Hub Monitoring technical features ........................................................... 57
Table 5-12: EOSC-Hub Messaging Service technical features .............................................. 59
Figure 4.5: High-level architecture of the EOSC Accounting ................................................................. 28
Figure 4.6: Functional architecture of the EOSC Helpdesk ................................................................. 30
Figure 4.7: High-level architecture of a monitoring service ................................................................. 32
Figure 5.1: EOSC Resource Catalogue high-level architecture. Yellow arrows identify API interfaces described below. ................................................................. 37
Figure 5.2: EOSC Service Order Management and Composition .......................................................... 46
Figure 5.3: SOMBO high-level architecture ......................................................................................... 47
Figure 5.4: Data Usage Statistics for the EOSC: UsageCounts high-level architecture ....................... 52
Figure 5.5: High-level architecture and integrations of the EOSC Helpdesk based on the new technology ..... 55
Figure 5.6: ARGO Messaging Service High-Level Architecture .......................................................... 59
# List of Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAI</td>
<td>Authentication and Authorisation Infrastructure</td>
</tr>
<tr>
<td>AMS</td>
<td>Argo Messaging Service</td>
</tr>
<tr>
<td>API</td>
<td>Application Program Interface</td>
</tr>
<tr>
<td>A/R</td>
<td>Availability and Reliability</td>
</tr>
<tr>
<td>CMDB</td>
<td>Configuration Management DataBase</td>
</tr>
<tr>
<td>CRIS</td>
<td>Current Research Information System</td>
</tr>
<tr>
<td>CRM</td>
<td>Customer Relationship Management</td>
</tr>
<tr>
<td>CRUD</td>
<td>Create Read Update Delete</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>EPOT</td>
<td>EOSC Portal Onboarding Team</td>
</tr>
<tr>
<td>HDFS</td>
<td>Hadoop Distributed File System</td>
</tr>
<tr>
<td>HPC</td>
<td>High Processing Compute</td>
</tr>
<tr>
<td>ISNI</td>
<td>International Standard Name Identifier</td>
</tr>
<tr>
<td>OMS</td>
<td>Order Management System</td>
</tr>
<tr>
<td>ORCID</td>
<td>Open Researcher and Contributor ID</td>
</tr>
<tr>
<td>PID</td>
<td>Persistent Identifier</td>
</tr>
<tr>
<td>REST API</td>
<td>Representation State Transfer Application Program Interface</td>
</tr>
<tr>
<td>SLA</td>
<td>Service Level Agreement</td>
</tr>
<tr>
<td>SOMBO</td>
<td>Service Order Management Back-Office</td>
</tr>
<tr>
<td>UI</td>
<td>User Interface</td>
</tr>
</tbody>
</table>
1 Executive Summary

This document presents the initial specification of the functionalities, interactions (data flows and APIs), and resulting architecture of the EOSC Core back-office platform, including interfaces to the front-office components to integrate with the EOSC Portal.

A functional architecture for the EOSC Core back-office was designed after an analysis of the main requirements gathered from the users of the back-office: providers of thematic or horizontal services and resources, portal or resource catalogue providers (thematic, regional, project-based, etc.), EOSC funders and other relevant stakeholders (e.g. the EC or the EOSC Association) and EOSC Portal front-office functionalities. This analysis allowed us to identify a list of key features to be defined and the main EOSC Core back-office enabling functional components. These enabling functional components were mapped onto the items of EOSC Future’s high-level technical roadmap which are relevant to the Core back-office platform. Their main features were also described.

After the identification of the enabling functional components, a thorough analysis of the current EOSC landscape and of the main outputs of past relevant EOSC initiatives (e.g. EOSC-hub, OpenAIRE-Advance, EOSC Enhance) was carried out to identify a set of components/services/tools that can properly act as background components for the EOSC core back-office functional components. Details on how these background components can implement the main back-office functions are provided in the deliverable.

Leveraging the functional architecture and the background components that were identified, a technical architecture was drawn, connecting such components through interfaces and APIs with the aim of creating a homogeneous and coherent EOSC Core back-office platform able to guarantee a uniform experience to its users. Furthermore, a technical roadmap for each background component was defined to enhance the components and fill the gaps to satisfy the requirements. Technical information for each background component and initial results of the gap analysis were also provided.

It is important to note that the specifications reported in this document should be considered as the starting point for the WP4 design and development activities. Thanks to a continuous requirement gathering and feedback collection process, we expect to enhance the functional and technical architectures during the project’s lifetime to satisfy the needs of a wider group of research communities. The EOSC Core back office will evolve accordingly and by the end of the project we aim to deliver a powerful platform that will be able to make EOSC an ideal environment to take European Science to the next level. An update of the EOSC Core back-office functional and technical architectures will be provided in M24. It will be included in the final periodic reporting too.
2 Introduction

The EOSC Core Back-Office platform serves EOSC providers and offers a series of functionalities to allow them to access, share and manage their EOSC resource.

This deliverable reports the output of the work to define the functional and technical specifications of the EOSC Core back-office. The intended audience of this document is made of EOSC technical architects and service providers of the EOSC Core services, other EOSC providers and the European Commission. It is organised as follows:

- Section 3 presents the requirements for the EOSC Core back-office components gathered from its main stakeholders and the project’s high-level technical roadmap. From these requirements, a list of enabling functional components is derived.
- Section 4 describes the EOSC Core back office’s functional architecture, identifying the background components (delivered by past projects and initiatives) that support the development of the enabling functional components and outlining how they should collaborate. It provides details for each functional component.
- Section 5 describes the EOSC Core back office’s technical architecture. For each component of the EOSC Core back office, a technical roadmap is presented detailing the work needed to enhance the background components to satisfy the requirements.
- Section 6 lists the main gaps currently identified that need to be addressed in the coming months.
- Section 7 draws conclusions and next steps.
3 Requirements for the EOSC Core Back-Office components and Functional Components

3.1 Stakeholders Requirements and Enabling Functional Components

The EOSC Core for back-office is mainly intended to serve EOSC providers, facilitate access to EOSC-Core services and allows providers to share and manage their EOSC resources. It also offers a series of enabling functionalities for the EOSC Portal front-office components.

The main stakeholders that will use the EOSC Core back-office components are:

- EOSC providers of thematic services and resources (e.g. clusters and research infrastructures);
- EOSC providers of horizontal/transversal services and resources (e-infrastructures, but also clusters and research infrastructures);
- Providers of thematic and regional portals willing to offer their services and resources through EOSC;
- Other EC-funded projects (e.g. the EOSC-o7 projects) and initiatives delivering services and resources for EOSC;
- EOSC funders and other relevant stakeholder (e.g. the EC or the EOSC Association) to get information about the usage and uptake of EOSC and its services;
- Providers of the EOSC Portal front-office functionalities.

The requirements of these stakeholders for the EOSC Core for back-office are diverse. The most relevant, collected from EOSC Future and past projects and initiatives (e.g. EOSC-Hub, OpenAIRE-Advance, EOSC Enhance), are listed in Table 3-1 [1] [2] [3] [4] [5]. They are considered features that should be offered by the EOSC Core back-office and we named the them accordingly.

Table 3-1: EOSC Core back-office features from stakeholder requirements

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Requirement description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource onboarding</td>
<td>Register and manage their services and resources in the EOSC Resource Catalogue</td>
</tr>
<tr>
<td>Portal/resource catalogue onboarding</td>
<td>Connect their resource catalogues to the EOSC Resource Catalogue</td>
</tr>
<tr>
<td>EOSC Order Management</td>
<td>Enable services to be accessed and ordered by EOSC users</td>
</tr>
<tr>
<td>Composability</td>
<td>Ability to group any EOSC resources (services, data, etc.) into ready-to-use solutions, order, and execute them seamlessly as a whole</td>
</tr>
<tr>
<td>Open Science statistics</td>
<td>Get information about research impacts or trends for countries, institutions, research infrastructures (e.g. number of open access publications/datasets and the number of repositories and journals)</td>
</tr>
<tr>
<td>EOSC statistics</td>
<td>Get information about EOSC usage and EOSC resource ordering and access</td>
</tr>
<tr>
<td>EOSC service accounting</td>
<td>Get indicators for the usage of EOSC Core and Exchange services</td>
</tr>
<tr>
<td>EOSC research product usage statistics</td>
<td>Get indicators about downloads and views of EOSC research products (publications, datasets, or software)</td>
</tr>
<tr>
<td>EOSC support</td>
<td>Manage user requests about EOSC Core and Exchange services</td>
</tr>
<tr>
<td>EOSC monitoring</td>
<td>Get near real-time status of the EOSC services</td>
</tr>
</tbody>
</table>

However, not all these requirements are relevant to all the identified stakeholders and each requirement can be relevant to different stakeholders for various reasons. The following table crosses the features described above with the EOSC Core back-office stakeholder groups, providing more insights about how each feature will be used by each stakeholder.

The stakeholders presented above were further grouped in four sets:
- EOSC Providers: thematic and horizontal
- Providers of portals or resource catalogues: thematic, regional, project-based portals, etc.
- EOSC Funders and other relevant stakeholders
- Providers of EOSC Portal Front-Office functionalities

**Table 3-2: EOSC Core Back-Office requirements per stakeholders**

<table>
<thead>
<tr>
<th>Stakeholders / Features</th>
<th>EOSC Providers (thematic + horizontal)</th>
<th>Providers of portals or resource catalogues providers (thematic, regional, project based, etc.)</th>
<th>EOSC Funders and other relevant stakeholders</th>
<th>Providers of EOSC Portal Front-Office functionalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Onboarding</td>
<td>Onboarding and management of their EOSC resources</td>
<td></td>
<td>Publishing the resources in the EOSC Portal</td>
<td></td>
</tr>
<tr>
<td>Portal/Catalogue Onboarding</td>
<td></td>
<td>Onboarding and management of their resource catalogue</td>
<td>Publishing the resources in the catalogues in the EOSC Portal</td>
<td></td>
</tr>
<tr>
<td>EOSC Order Management</td>
<td>Making their services orderable through EOSC</td>
<td></td>
<td>Exposing ordering functions for EOSC resources</td>
<td></td>
</tr>
<tr>
<td>Composability</td>
<td>Fostering the combined usage of their services with other EOSC resources</td>
<td></td>
<td>Enriching EOSC resource descriptions with attributes to facilitate and, when possible, orchestrate the integration with other EOSC resources</td>
<td></td>
</tr>
<tr>
<td>Open Science Statistics</td>
<td>Getting open science statistics about the EOSC resources they provide</td>
<td>Measurements of the uptake and impact of EOSC</td>
<td>Enriching EOSC resource descriptions in the portal with open science statistics</td>
<td></td>
</tr>
<tr>
<td>EOSC statistics</td>
<td>Getting information about the number of accesses and orders to their resources</td>
<td>Getting information about EOSC usage and the most-used EOSC resources</td>
<td>Enriching EOSC resource descriptions in the portal with statistics about accesses and orders</td>
<td></td>
</tr>
<tr>
<td>EOSC service accounting</td>
<td>Getting specific indicators for each of their EOSC resources to have a measurement of their usage</td>
<td>Getting specific indicators for each of their EOSC resources to have a measurement of their usage and an estimation of the</td>
<td>Enriching EOSC resource descriptions in the portal with specific indicators per resource</td>
<td></td>
</tr>
</tbody>
</table>
The requirements outlined above, together with EOSC Future’s high-level technical roadmap that will be presented in the section 3.2 drove the design of the EOSC Core back-office presented in this document.

As a next step towards defining the EOSC Core back-office functional specifications, the features identified above were grouped into a set of enabling functional components listed in the following table. An additional functional component was added to allow asynchronous communication between different EOSC Core back-office components. This is fundamental to enable the coordination and exchange of information between them.

The next section of this document will present the EOSC Core back-office components’ functional architecture for these enabling components.

Table 3-3: EOSC Core back-office enabling functional components and supported features

<table>
<thead>
<tr>
<th>Enabling Functional Components</th>
<th>Supported Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOSC resource catalogue</td>
<td>Resource onboarding</td>
</tr>
<tr>
<td></td>
<td>Portal/Catalogue onboarding</td>
</tr>
<tr>
<td>EOSC service order management &amp; composition</td>
<td>EOSC order management</td>
</tr>
<tr>
<td></td>
<td>Composability</td>
</tr>
<tr>
<td>EOSC and open science statistics</td>
<td>Open science statistics</td>
</tr>
<tr>
<td></td>
<td>EOSC statistics</td>
</tr>
<tr>
<td></td>
<td>EOSC service accounting</td>
</tr>
<tr>
<td></td>
<td>EOSC research product usage statistics</td>
</tr>
<tr>
<td>EOSC helpdesk</td>
<td>EOSC support</td>
</tr>
<tr>
<td>EOSC monitoring</td>
<td>EOSC monitoring</td>
</tr>
<tr>
<td>EOSC messaging</td>
<td>Coordination and exchange of information between EOSC Core back-office components</td>
</tr>
</tbody>
</table>

3.2 Requirements from the High-level Technical Roadmap

Technical developments in EOSC Future are driven by the project’s high-level technical roadmap. This roadmap was built taking into account requirements collected by several research communities, e-infrastructures and other relevant stakeholders as well as a common vision of EOSC that emerged from the joint effort of the EOSC Architecture WG and past EOSC projects (EOSC Enhance, EOSC-hub, OpenAIRE-Advance, etc.). The roadmap was organised into areas with a focus on providing an improved user experience to research communities in Europe.

This section presents the items of the project’s high-level technical roadmap that are related to the EOSC Core back-office components (WP4) and how these have been translated into design choices and implementation activities for the back-office components. In particular, each element of the technical roadmap that is relevant
for EOSC Core back-office was linked to one or more of the enabling functional components identified in the previous section. These enabling functional components are expected to deliver the related roadmap item.

The output of this analysis is described in the table below. It drove the functional and technical specifications described in the next sections of this document.
Table 3-4: EOSC Future technical roadmap and EOSC Core back-office enabling functional components

<table>
<thead>
<tr>
<th>Area</th>
<th>EOSC Core back-office functional capabilities for EOSC Users</th>
<th>EOSC Core back-office enabling functional components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M6</td>
<td>M18</td>
</tr>
<tr>
<td>User Experience - Resource Sharing and Discovery</td>
<td>Researchers can see and reach all thematic and regional portals from the EOSC Portal. Researchers can see services from the thematic clusters through EOSC.</td>
<td>A researcher searching the EOSC Portal sees a comprehensive set of resources from multiple communities and clusters. Usage statistics for datasets (views, downloads) will be collected and made available. Researchers using resources through EOSC will have common elements such as AAI, support, monitoring, and accounting. Researchers using a thematic portal see resources (services, data) pulled in from the central EOSC registry.</td>
</tr>
<tr>
<td>User Experience - Resource Allocation</td>
<td>Researchers can request resources offered by INFRAEOSC-07 projects through the EOSC Marketplace.</td>
<td>Researchers requesting resources through the EOSC Marketplace portal can request access to EC-funded resources.</td>
</tr>
<tr>
<td>User Experience - Resource Composability</td>
<td>Researchers can see example cases of complex workflows using multiple resource providers.</td>
<td>Researchers can orchestrate data analysis on computing resources provided by multiple e-Infrastructure resource providers.</td>
</tr>
<tr>
<td>EOSC-Exchange</td>
<td>Resources onboarded through prior projects (e.g. EOSC-hub, EOSC Enhance, eInfraCentral) remain available. Resource requests are passed to the provider.</td>
<td>EOSC-Exchange highlights which services can be easily integrated or composed. The onboarding process is extended to include validation of data sources to align to community (FAIR) metadata guidelines. Resource requests can lead to automatic provisioning of resources.</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>EOSC-Core</td>
<td>Provider portal &amp; resource registry Allows direct onboarding (web + API) but as transfer of provider and resource records from other registries and vice-versa.</td>
<td>Provider portal &amp; resource registry Increased automatic validation tools and automatic flagging of resources which are likely to require review.</td>
</tr>
</tbody>
</table>

Researchers can see a rich range of horizontal resources and request access to them. and transfer back the output to their storage system. easy they are to compose and connect to.
<table>
<thead>
<tr>
<th><strong>Accounting supports usage tracking to support virtual access reimbursement by the EC.</strong></th>
<th>and resource profiles (location, sector, organisation type).</th>
<th>capacity data offered by providers.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Helpdesk</strong></td>
<td>Helpdesk</td>
<td>Helpdesk</td>
</tr>
<tr>
<td>Helpdesk covers core services. Customisation based on new/updated technology and connected to the service management system.</td>
<td>Helpdesk covers core services and can redirect tickets to providers who have their own helpdesk. Helpdesk can be tested by providers who wish to use it.</td>
<td>Helpdesk-as-a-service available as optional add-on during onboarding. Integrated with central helpdesk functions.</td>
</tr>
<tr>
<td><strong>Order processing</strong></td>
<td>Order processing</td>
<td>Order processing</td>
</tr>
<tr>
<td>Order management is set up and includes integration of providers. Already used for services inherited from EOSC-hub and others that previously enabled it.</td>
<td>Order management can deploy and provide resources from selected providers, including from 07 projects.</td>
<td>Order processing for thematic services can bundle orders for horizontal or basic services needed to deliver the thematic service and include deployment and provisioning.</td>
</tr>
<tr>
<td><strong>EOSC Portal metrics dashboard</strong></td>
<td>EOSC Portal metrics dashboard</td>
<td>EOSC Portal metrics dashboard</td>
</tr>
<tr>
<td>The dashboard provides statistics about services and access requests and is fully integrated with the EOSC Portal.</td>
<td>The dashboard is enriched with additional information on EOSC resource providers and on activities of researchers in EOSC.</td>
<td>The dashboard provides statistics related to the combined/integrated usage of EOSC resources.</td>
</tr>
</tbody>
</table>
4 Functional Architecture
The design of the Functional Architecture for the EOSC Core back-office took into account the requirements described in the previous section as well as the current EOSC landscape. Components developed by past initiatives were selected to fulfil the EOSC Core back-office enabling functional components identified by the requirements, and evolution roadmaps were defined for each of these. Furthermore, integration activities were planned to create a unified EOSC Core Back-office platform able to guarantee a uniform experience to its users.

4.1 Background Components and Overall Functional Architecture
A thorough analysis of the landscape and of the main outputs of past relevant EOSC initiatives, done during the proposal preparation and in the first months of the project, allowed the identification of a set of components/services/tools that can properly act as background components for the EOSC Core back-office enabling functional components identified in section 3. Such background components already cover part of the stakeholder requirements while they need extensions to satisfy other requirements. The amount of requirements that still require enhancement of the background components varies for each component, details on this are provided later in this document.

Table 4-1 shows the result of this study. It provides a short description of what is expected from each functional component in terms of main features and a list of background components that will be adopted and, when needed, integrated to deliver such functional components. The initiative or project where each background component was developed is also reported as a prefix of the component name.

Table 4-1: EOSC Core back-office enabling functional components: functional requirements and background components

<table>
<thead>
<tr>
<th>Enabling Functional Components</th>
<th>High-level Functional Requirements</th>
<th>Background Components</th>
</tr>
</thead>
</table>
| EOSC resource catalogue       | The EOSC resource catalogue maintains an up-to-date map of EOSC resources (providers, services, data sources, research products) | • EOSC Enhance provider portal  
• EOSC Enhance service catalogue  
• OpenAIRE-Advance research graph  
• OpenAIRE EXPLORE |
| EOSC service order management & composition | The Service order management & composition function enables resource ordering, user request monitoring and communication with resource providers. It also offers instruments to facilitate and, when possible, automate the integration of EOSC resources to enable composition. | • EOSC Marketplace  
• EOSC-hub service order management back office (SOMBO) |
| EOSC and open science statistics | Various set of statistics:  
• Open science statistics, including research impact or trends for countries, institutions, research infrastructures (e.g. number of open access publications/datasets)  
• EOSC statistics, dashboards with statistics of usage of the EOSC Portal and service orders  
• EOSC service accounting, indicators about the usage of EOSC Core and Exchange services in order to | • OpenAIRE-Advance  
• EOSC-hub metrics portal  
• EOSC-hub accounting repository  
• EOSC-hub accounting portal  
• OpenAIRE-Advance usage counts service |
| **EOSC helpdesk** | The EOSC Helpdesk works as a unified ticketing system by managing the requests related to different Core services. It can be also provided as a service for EOSC Exchange service providers through three main usage scenarios:  
• Direct usage: providers uses dedicated support units in the EOSC helpdesk  
• Ticket redirection: the EOSC Helpdesk redirects the entry request for the specific service to a mailing list or 2nd-level ticketing system managed by the providers.  
• Full integration: tickets could seamlessly propagate to the dedicated helpdesk after submission in the EOSC Helpdesk. | **EOSC-hub helpdesk** |

| **EOSC monitoring** | It monitors services by emulating typical user scenarios which allows them to infer the quality of service the actual user gets. As a result it offers near real-time status updates which allow both end-users and site admins to have an overview of the service offered at any given time. EOSC monitoring allows to quickly identify and correlate problems before they affect end-users and ultimately the productivity of the services, the infrastructure and finally the organisation. | **EOSC-hub monitoring** |

| **EOSC messaging** | A real-time messaging service that enables asynchronous communication between the different components of the EOSC Core Back-Office. | **EOSC-hub messaging** |

However, each of these functional components is a part of the overall back-office platform. Integration and coordination of these elements is needed to provide an homogeneous and coherent platform.

The diagram in Figure 4.1 presents the overall functional architecture highlighting the connections and interfaces between each component. Details about the interactions between Core back-office components are presented later in this document.
4.2 EOSC Resource Catalogue

The EOSC resource catalogue maintains an up-to-date map of the EOSC resources, i.e. the EOSC research graph, as offered by EOSC providers, which are organisations eligible (thus authorised) to publish EOSC resources in the catalogue. The types of EOSC resources are defined by the EOSC Resource Description Interoperability Framework (WP3), which today includes: providers, services (with data sources as an explicit subtype), as for guidelines defined by the provider & resource description template (developed by the EOSC Enhance project\(^1\)), and research products, as for guidelines defined by the OpenAIRE-Advance project\(^2\).

More specifically, The EOSC resource catalogue consists of the following components:

- **The EOSC provider portal**: the portal enables the front-end functionality for the registration of EOSC providers, organisations that publish their resources via the EOSC catalogue. It offers capabilities to onboard and manage EOSC resources. It also offers the provider dashboard, where representatives from provider organisations have a detailed view of their offerings in the EOSC Portal as well as various usage statistics on their resources. Finally, it offers members of the onboarding team of the EOSC portal the functionality to manage EOSC portal catalogue entries, i.e. manage the onboarding process of providers that apply to list their resources in the Portal, audit the onboarded resources, etc.

- **An EOSC service catalogue**: the component offers the underlying storage functionality and the interoperability tools for the programmatic access, registration, manage (CRUD) of providers, services and catalogues. It also offers the necessary API functionality for the interoperability of service catalogues from individual providers or aggregators (e.g. thematic or regional catalogues) with the EOSC portal. Modifications to the entities maintained in the Service Catalogue are synchronised with the EOSC research graph, which aggregates the entire set of entities and their relationships in the EOSC Portal.

- **EOSC research graph (EOSC-RG)**: the component offers capabilities to populate and access a knowledge graph, where (i) nodes represent instances of the different EOSC resource types (e.g. services and products) and (ii) relationships represent the semantic associations between them. Figure 4.2 below, shows the EOSC-RG high-level data model. Nodes of the graph contain information describing the resources, the EOSC provider behind the resources and with which EOSC Interoperability Frameworks the resources are compliant.

\(^1\) https://eosc-portal.eu/providers-documentation/eosc-provider-portal-provider-profile
\(^2\) https://eosc-portal.eu/providers-documentation/eosc-provider-portal-resource-profile
\(^3\) http://guidelines.openaire.eu
4.2.1 EOSC Provider Portal

The EOSC provider portal offers APIs and UIs for providers to register and update their profiles, plus the administrator UIs for the EOSC staff needed to process the registration request. Moreover, it offers functionalities for EOSC providers to register/onboard their resources into the EOSC-RG. The EOSC Enhance Service registry supports the EOSC provider portal through its underlying storage functionality and interoperability tools for the programmatic access, while OpenAIRE PROVIDE supports the EOSC provider portal through its functionalities required to onboard research products via the EOSC data source services. The list of functions is listed in Table 4.2.

<table>
<thead>
<tr>
<th>Functions</th>
<th>Description (how the function is built and what it provides)</th>
<th>Added value for EOSC users</th>
<th>Components</th>
</tr>
</thead>
</table>
| API and UI to onboard/manage EOSC providers | Providers can register to EOSC to become eligible for the onboarding of resources | Building an EOSC listing of eligible providers to ensure controlled onboarding of services | EOSC Enhance service registry  
 EOSC Enhance provider portal |
| API and UI to onboard EOSC services | EOSC providers can onboard their services into the EOSC service catalogue: the action can be performed via APIs (service catalogues synchronisation framework) or via UIs by provider representatives. | Populating the EOSC service catalogue and EOSC-RG to deliver an up-to-date map of EOSC resources | EOSC Enhance service registry |
| API and UI to onboard EOSC research products | EOSC providers can onboard their research products into the EOSC Catalogue: the action can be performed by providers of data source services, and takes place via data sources’ APIs | Populating the EOSC-RG to deliver an up-to-date map of EOSC resources | OpenAIRE research graph  
 OpenAIRE PROVIDE |

Table 4.2: EOSC provider portal and service catalogue functions: onboarding and management
### Minting PIDs for services
Service providers registering a service can optionally request the minting of a PID for the service. Provision of PIDs for EOSC services
EOSC Enhance service registry

### UI for EOSC Portal onboarding team (EPOT) members to audit onboarding of services and providers
EOSC Portal onboarding team (EPOT) members can manage the onboarding process (approve or reject an application), manage the catalogue of providers and services and audit the validity of the catalogue entries.
Improving the quality of the catalogue entries and applying the rules of participation in new applications
EOSC-hub provider portal

### UI for providers to view and manage the services in the EOSC Portal
Service providers can view the list of services registered in the EOSC portal and perform a variety of actions such as activate, deactivate, view usage statistics, etc.
Enables the delivery of an up-to-date map of EOSC resources
EOSC-hub provider portal

### 4.2.2 The EOSC Research Graph Functions
The EOSC-RG functionalities for resource discovery/access are listed in. The component is built via the integration and extension of the EOSC Enhance service registry, the OpenAIRE research graph, and the OpenAIRE PROVIDE.

**Table 4.3: EOSC research graph functions: resources discovery and access**

<table>
<thead>
<tr>
<th>Functions</th>
<th>Description (how the function is built and what it provides)</th>
<th>Added value for EOSC users</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>APIs to search, browse, and navigate the EOSC-RG</td>
</tr>
<tr>
<td>The REST API supports search/browse functionalities for the EOSC data model entities based on their attributes. The API requires a security token.</td>
<td>The REST API supports search/browse functionalities for the EOSC data model entities based on their attributes. The API requires a security token.</td>
<td>The REST API supports search/browse functionalities for the EOSC data model entities based on their attributes. The API requires a security token.</td>
<td>The REST API supports search/browse functionalities for the EOSC data model entities based on their attributes. The API requires a security token.</td>
</tr>
<tr>
<td>Third-party users/services can dynamically access parts of the EOSC resource catalogue. Examples include SMEs, researchers, EOSC services in the Exchange, and EOSC-Core services</td>
<td>Third-party users/services can dynamically access parts of the EOSC resource catalogue. Examples include SMEs, researchers, EOSC services in the Exchange, and EOSC-Core services</td>
<td>Third-party users/services can dynamically access parts of the EOSC resource catalogue. Examples include SMEs, researchers, EOSC services in the Exchange, and EOSC-Core services</td>
<td>Third-party users/services can dynamically access parts of the EOSC resource catalogue. Examples include SMEs, researchers, EOSC services in the Exchange, and EOSC-Core services</td>
</tr>
</tbody>
</table>
4.3 EOSC Service Order Management & Composition

One of the formative aspects of the EOSC Portal vision was to facilitate the collaboration between EOSC end-users and EOSC resource providers to stimulate the uptake of EOSC resources. By providing different levels of support for various EOSC resource access methods, the EOSC Marketplace addresses the inherent diversity of the EOSC ecosystem. Among other functionalities supporting resource accessibility, the EOSC Marketplace provides end-user features to order resources, monitor user requests and communicate with resource providers. For the providers, in turn, the EOSC Marketplace offers various interoperability patterns to integrate the order management process in alignment with a vision of a federated system of systems. The implemented interoperability patterns are aimed at individual providers and provider communities adopting the guidelines to integrate their own resource provisioning mechanisms. EOSC’s service order management process also engages the EOSC Portal operations team, which plays a key role in the EOSC Portal CRM (Customer Relationship Management), end-user support and guidance through the composability of resources in the EOSC ecosystem.

4.3.1 Service Order Management

As a connection point between resources and order management systems (OMSes) for resource providers, the EOSC Marketplace facilitates the ordering process. It is also an entry point for users looking to advance their research projects by using EOSC resources. They can follow the entire path from resource discovery to order fulfillment in a single portal, resulting in a coherent experience from their side.

On the other hand, providers and communities are presented with several flexible options to integrate their ordering process. Firstly, they can specify offerings for their resources. Providers can configure their offerings using the offering API or an ergonomic UI. Both are flexible enough to support various offering use cases. Secondly, they can handle orders placed in the system in several interoperable ways, either by using the existing SOMBO system (service order management back office), or by using the marketplace ordering API. The latter allows them to integrate existing order management systems (OMSes) while providing out-of-the-box support for Jira-based solutions as a reference implementation for the integration.
The EOSC Marketplace is the central part of the order management, which facilitates the order processing and provides various ways to interface with it. End-users can use the main component available under https://marketplace.eosc-portal.eu to access both the catalogue (discovery and access) and the user-space (order management and support). The Marketplace provides offering API and ordering API, for the use of providers, communities and the EOSC Portal operations team, It also provides several methods of order handling.

OMSes are a separate group of components that integrate closely with the Ordering API, but which are free to have additional functionalities for their users. An example of such a component is the EOSC Portal OMS, i.e. SOMBO. On one hand, it has its own UI catering to its users (mostly providers in addition to the operations team). On the other hand, it connects to the EOSC Marketplace through the ordering API.

Figure 4.3 presents elements of the OMSes oriented towards the EOSC Marketplace. However, these elements may be part of a more complex local ecosystem of services. An example could be a marketplace service established by a community of providers, which also integrates with the offering API, thus freeing their providers from having to use the EOSC Marketplace directly.
Specifically, the functionalities provided by the ordering API form a message bus that allows a tri-directional communication (as far as roles are related) between the users, the communities and providers, and the EOSC Portal operations team. By using a standardised approach, all of them can communicate using their systems of choice.

Table 4.4: Access and compose resources: service order management

<table>
<thead>
<tr>
<th>Functions</th>
<th>Description (how the function is built and what it provides)</th>
<th>Added value for EOSC users</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define resource offers (Offering API or UI)</td>
<td>Define variants of your service: for different tiers, different target users, different SLA etc. Provide information about access type and offer description. Marketplace UI and Marketplace offering API are available for the providers to use.</td>
<td>Allows providers to properly advertise resource variants. Allows end-users to select a service variant suitable for their use case.</td>
<td>EOSC Marketplace</td>
</tr>
<tr>
<td>Define resource order related technical parameters (offering API or UI)</td>
<td>Define parameters that need to be provided by the end-user during the order specification. Marketplace UI and Marketplace offering API are available for the providers to use.</td>
<td>Allows providers to collect orders from a user. Allows end-users to specify technical parameters of the ordered resources.</td>
<td>EOSC Marketplace</td>
</tr>
<tr>
<td>Select order management</td>
<td>Define the way the resource orders are processed.</td>
<td>Allows providers to choose the preferred</td>
<td>EOSC Marketplace</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
<td>Providers may use SOMBO service to handle resource orders or integrate their own order management systems. The OMS may be selected with the use of Marketplace UI or the Marketplace offering API</td>
<td>order processing method</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Manage resource orders (ordering API or SOMBO UI)</td>
<td>Handle resource orders. Get information about the order specification (technical parameters, project metadata - user typology, affiliation, scientific domain, other requests in the user project). Provision the resources, notifying users about order status. Provide resource access information. Make use of the SOMBO UI or integrate your own order management system.</td>
<td>Allows providers to handle resource orders</td>
<td>EOSC Marketplace&lt;br&gt;SOMBO (service order management back office)&lt;br&gt;Marketplace API client&lt;br&gt;Marketplace Jira adapter</td>
</tr>
<tr>
<td>Message user (Ordering API or SOMBO UI)</td>
<td>Send messages to the user requesting a resource or willing to compose resources (project-level and resource order/project item-level communication). Adopt the SOMBO UI or integrate your own order management system.</td>
<td>Allows providers/operations team to communicate with the users</td>
<td>EOSC Marketplace&lt;br&gt;SOMBO (service order management back office)&lt;br&gt;EOSC Marketplace API client&lt;br&gt;EOSC Marketplace Jira adapter</td>
</tr>
<tr>
<td>Message resource provider (ordering API or SOMBO UI)</td>
<td>Message another provider provisioning resources for the same user project. Adopt the SOMBO UI or integrate your own order management system.</td>
<td>Allows providers/operations team to consult with other providers during resource provisioning</td>
<td>EOSC Marketplace&lt;br&gt;SOMBO (Service order management back office)&lt;br&gt;EOSC Marketplace API client&lt;br&gt;EOSC Marketplace Jira adapter</td>
</tr>
<tr>
<td>Register order management system</td>
<td>Register an order management system that may be used to process orders for a provider or a community of providers. Get credentials to integrate other systems with the use of the Marketplace Ordering API.</td>
<td>Allows providers to integrate existing order management systems with EOSC Marketplace</td>
<td>EOSC Marketplace</td>
</tr>
<tr>
<td>Order a resource</td>
<td>Request access to/provisioning of a resource. Specify technical parameters for the order. Select a project to collect resources for a specific use case.</td>
<td>Allows end-users to request resources</td>
<td>EOSC Marketplace</td>
</tr>
<tr>
<td>Monitor order status</td>
<td>Get information about the order delivery progress.</td>
<td>Allows end-users monitor order progress</td>
<td>EOSC Marketplace</td>
</tr>
</tbody>
</table>
Message service provider
- Provide additional information for the provider. Describe your use case. Ask for help in using or accessing the resource.
- Allows end users to contact providers
- EOSC Marketplace

Message EOSC Portal operations team
- Describe your use case. Ask for help in contact with the provider. Ask for help in resource composition.
- Allows end-users to get support from the Operations Team
- EOSC Marketplace

Rate requested resource
- Provide ratings for the ordered resources.
- Allows providers to get information about the user satisfaction
- Allows to get information about resource ratings provided by other users
- EOSC Marketplace

4.3.2 Composition

Resource composition is a widespread functionality based on the high-level aim to combine different resources to support a single use case of a user. Ideally, it would include the possibility to compose workflows based on the combined use of a multitude of available services, utilise infrastructural services to prepare domain-specific service offers, match data coming from various datasets to perform multidisciplinary research, with boundless possibilities to make use of the harmonised set of resources, regardless of their type and interoperability barriers. In practice, many challenges may be addressed in terms of the technical interoperability and integration of services, their maturity level, access policy alignment etc. The evolution of functionalities supporting resource composition should be perceived as a series of steps supporting the increase of interoperability with respect to the technical limitations and adequate attention paid to the specific use cases, implemented as appropriate solutions consistently bridging the gap between the current state-of-play of the EOSC environment and the target vision of the ubiquitous alignment in various resource procurement strategies. Although the understanding of the gaps that may be successfully bridged thanks to the outcomes of the EOSC Future project is still maturing and successively growing with the progress of requirement analysis, there are some initial steps to be taken, identified in the initial phase of the project. A basic assumption in the process of identifying specific resource composition challenges is that the delivery of functionalities for at least two actors in the resource provider and end-user interplay is needed. One subset of the functional requirements is focused on those providers who need to offer their resources in a way that will allow for resource composition. Conversely, end-users require functionalities that allow them to compose resources based on their needs. Both perspectives need to be addressed in the design of any foreseen solution. At the six-month milestone, the EOSC Marketplace provides merely the baseline functionalities for the envisioned system and focuses on composition support in the resource ordering process. Nevertheless, the support for both types of actors is addressed in the current implementation.

EOSC Marketplace user projects allow the end-users to collect various resources that support their use cases. Each of the resource providers taking part in the ordering process is notified and asked to deliver their resource based on the user specification. Each of the providers is able to determine the context (the use case) of the resource provisioning based on the information provided in the project metadata. They are also informed about the other resources that have been requested with the use of the ordering mechanism to support a specific user project/use case. Providers are allowed to communicate with each other with the EOSC Marketplace acting as a broker in the resource delivery. The implemented mechanism also allows the EOSC Portal operations team to coordinate the delivery of multiple resources supporting a single use case, by contacting the respective providers as well as the end-user that requested access. The very same messaging mechanism can be used as a main channel for end-users mainly looking for support in the resource composition. This channel also acts as a part of the EOSC Portal CRM (customer relationship management) in order management.

With the use of resource bundles, the EOSC Marketplace allows providers to specify resource offers that are made of a combination of multiple resources. The underlying mechanism engages different resource providers to provision resources to satisfy an order. Once an order for the composable resources has been placed
respective providers are notified about the resource request. Programmatic interfaces allow providers to integrate their own resource provisioning systems to handle and automate the delivery based on the resource order notifications.

Providers are offered with SOMBO service (service order management back office) as a ready-to-use solution to handle resource orders and communicate in the scope of the ordering process. They may also integrate their own resource provisioning mechanisms with the use of the Marketplace REST API. Reference API client implementation is provided as a Python library and the reference adapter is made available, allowing to integrate Atlassian Jira as a resource orders management system.

Resource composition is a vast subject which will be researched, analysed and elaborated during the EOSC Future project. The definition that is presented in this document forms a basis for the future evolution that will result from the substantial broadening of the functionality scope.

Table 4-5: Access and compose resources: service order management

<table>
<thead>
<tr>
<th>Functions</th>
<th>Description (how the function is built and what it provides)</th>
<th>Added value for EOSC users</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compose resources in user projects</td>
<td>User projects are created by the end-users. Project metadata describe the use case for resources in the project.</td>
<td>Allows end-users to order different resources to support a single use case.</td>
<td>EOSC Marketplace</td>
</tr>
<tr>
<td>Order resource bundles</td>
<td>Users are able to order compound resource offers (bundles). The composition of resources is delivered to them based on a step-wise specification of the respective resources needed to deliver the compound order.</td>
<td>Allows the end-users to order composition of resources.</td>
<td>EOSC Marketplace</td>
</tr>
<tr>
<td>Handle resource orders for a user project</td>
<td>The providers are informed about the items in the project and can communicate with other providers to deliver support in composing resources for a single use case. Providers can use SOMBO (service order management back office) to handle resource orders or integrate them through API to link their own resource provisioning systems and automate the resource delivery.</td>
<td>Allows resource providers to communicate with each other to deliver resources for a specific use case.</td>
<td>EOSC Marketplace SOMBO (service order management back office) EOSC Marketplace API client EOSC Marketplace Jira adapter</td>
</tr>
<tr>
<td>Configure resource bundles</td>
<td>Providers are able to configure compound resource offers (bundles) to support resource delivery based on a set of resources that are composed to deliver the offered value.</td>
<td>Allows resource providers to specify resources delivered as a bundle (composition of resources).</td>
<td>EOSC Marketplace</td>
</tr>
</tbody>
</table>

4.4 EOSC and Open Science Statistics

The EOSC Portal to be developed in WP5 will offer access to a number of different EOSC statistics:
• **Open science statistics**, i.e. queries and data analysis of the EOSC research graph. Statistics include research impact or trends, defined in terms of scientific outcomes, for countries, institutions, research infrastructures (e.g. 'number of open access datasets for Croatia');

• **EOSC statistics**, i.e. dashboards with statistics of usage of the EOSC Portal and service orders;

• **EOSC service accounting**, i.e. indicators about the usage, by EOSC users, of EOSC Core services (the EOSC portal itself) and EOSC Exchange services, in order to transparently report service cost to the EC;

• **EOSC research product usage statistics**, i.e. indicators collected from EOSC data source services related to downloads and views of research products: publications, datasets, or software.

### 4.4.1 Open Science Statistics

The Open Science Statistics presents a collection of indicators and visualisations that help interested stakeholders (policy-makers and research administrators among others) better understand the open science landscape in Europe across countries and, in the near future, subject areas. The platform assists the monitoring, and consequently the improvement, of open science policy uptake across different dimensions of interest, revealing weak spots and hidden potential. Based on the OpenAIRE research graph, following open science principles and an evidence-based approach, the indicators can be used to provide timely and reliable insights into the evolution of open science in Europe and assist in promoting good practices.

**Table 4-6: EOSC and Open Science statistics: Open Science Statistics**

<table>
<thead>
<tr>
<th>Functions</th>
<th>Description (how the function is built and what it provides)</th>
<th>Added value for EOSC users</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of Open Science across Europe</td>
<td>A set of indicators that present the overview of Open Science across Europe, such as the number of open access publications/datasets and the number of repositories and journals.</td>
<td>Access to indicators and statistics about Open Science across Europe</td>
<td>OpenAIRE Open Science Observatory</td>
</tr>
<tr>
<td>Detailed view of Open Science across Europe</td>
<td>Set of more detailed indicators across Europe, such as the number of open access publications by type, country, datasource, and organisation, or the number of publications with a PID or a license.</td>
<td>Access to detailed indicators and statistics about Open Science across Europe</td>
<td>OpenAIRE Open Science Observatory</td>
</tr>
<tr>
<td>Detailed view of open science for individual countries</td>
<td>Set of more detailed indicators of Open Science for a specific country. This page is similar to the detailed view of Open Science across Europe with the difference that it displays those indicators for a specific country.</td>
<td>Access to detailed indicators and statistics about Open Science for a specific country</td>
<td>OpenAIRE Open Science Observatory</td>
</tr>
</tbody>
</table>

### 4.4.2 EOSC Statistics

The EOSC Statistics is provided through a Metrics portal that aggregates data from EOSC Portal Google Analytics, the EOSC resource catalogue and the service order management component. These figures are consolidated and provided through different tables and reports. The final aim of this portal is to automatically create reports for the European Commission.
Table 4.7: EOSC and Open Science statistics: Metrics Portal

<table>
<thead>
<tr>
<th>Functions</th>
<th>Description (how the function is built and what it provides)</th>
<th>Added value for EOSC users</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service order metrics</td>
<td>Collect and consolidate data from the service order management component and provide it through tables and figures</td>
<td>Statistics about service order requests and the evolution over time</td>
<td>EOSC-hub Metrics Portal</td>
</tr>
<tr>
<td>Service provider metrics</td>
<td>Collect and consolidate data from EOSC resource catalogue and provide it through tables, figures, history.</td>
<td>Statistics about service providers and the evolution in time</td>
<td>EOSC-hub Metrics Portal</td>
</tr>
<tr>
<td>EC report</td>
<td>Collect and consolidate data from EOSC Portal Google Analytics, EOSC resource catalogue and the service order Management component. This part is used to provide reports for the European Commission.</td>
<td>Statistics about usage (access, pages, views) of the EOSC Portal and the EOSC Marketplace</td>
<td>EOSC-hub Metrics Portal</td>
</tr>
</tbody>
</table>

4.4.3 EOSC Accounting

The EOSC resource accounting service is able to aggregate (push and pull) usage indicators for different types of EOSC resources and services. It will support the accounting of virtual access resources.

4.4.3.1 Service Accounting

The EOSC Accounting service collects, stores, aggregates, and displays usage information of service resources. This usage data is collected from the resource centres of the EOSC infrastructure, operating services in the EOSC Exchange according to the EOSC accounting framework to be developed in WP3.

Accounting information is gathered from distributed sensors into a central accounting repository, where it is processed to generate summaries that are made available through an accounting portal. Depending on the use case the data may go via intermediate repositories that collate accounting data for particular regions, infrastructures or communities. The overall architecture is depicted in the following figure:
The accounting repository has a database back end, and needs to ensure the exchange of accounting information with peer e-infrastructures. The accounting portal receives and stores accounting information/data from the EOSC Exchange services that participate in the EOSC accounting framework (WP3) and architecture. For example, EOSC services providing computing and storage may report resource consumption by users and user groups (e.g. Virtual Organisation/VO). The accounting repository may then generate aggregated summaries and show views via a web portal. By grouping resource centres in a country on specific time intervals, a customised view can be generated and displayed. The databases are organised into resource record databases (e.g. CPU, VM, storage, etc.), a user record database, and a topology database.

**Table 4-8: EOSC and Open Science statistics: Service Accounting**

<table>
<thead>
<tr>
<th>Functions</th>
<th>Description (how the function is built and what it provides)</th>
<th>Added value for EOSC users</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregated views of usage.</td>
<td>Service usage across centres is aggregated on a selection of metrics into combined views that provide useful breakdowns of usage.</td>
<td>Users can see their resource usage wherever that usage occurred.</td>
<td>EOSC-hub Accounting Portal, EOSC-hub Accounting Repository, EOSC-hub Messaging</td>
</tr>
<tr>
<td>Views that allow usage to be checked against allocation.</td>
<td>Allocations are imported and displayed against the service used that has been collected previously.</td>
<td>Users and their community leaders can see how much of their allocation they are using.</td>
<td>EOSC-Hub Accounting Portal, EOSC-hub Accounting Repository, EOSC-hub Messaging</td>
</tr>
<tr>
<td>Provider-centric views of resource usage by users.</td>
<td>Alternative provider-centric views can be generated based on the same aggregated data once it has been processed.</td>
<td>Resource providers can see how their resources are being used.</td>
<td>EOSC-hub Accounting Portal, EOSC-hub Accounting Repository, EOSC-hub Messaging</td>
</tr>
</tbody>
</table>
Views that allow comparisons to be made between resource providers within and between regions and communities.

Data can be viewed at different levels of the topological hierarchy.

Managers of national research and e-infrastructures can see how their group of resource providers are performing.

EOSC-hub Accounting Portal, EOSC-hub Accounting Repository, EOSC-hub Messaging

4.4.3.2 Research Publications, Data and Software Accounting

The OpenAIRE Usage Counts Service gathers usage activity for research items like publications, research data and software, as well as consolidated usage statistics reports respectively, from OpenAIRE’s distributed network of data providers (repositories, e-journals, CRIS) by utilising open standards and protocols and exploiting reliable, consolidated and comparable usage metrics like counts of item downloads and metadata views conforming to the COUNTER Code of Practice.

The Usage Counts Service tracks anonymised usage events, i.e. metadata views or downloads, for research items using either plug-ins and patches for repository platforms like EPrints or DSpace, or by using a generic tracking tool for all other infrastructures. Usage information is transferred offline, to OpenAIRE’s databases for further processing using the COUNTER Code of Practice and statistical analysis. Usage statistics are deployed via OpenAIRE’s Portal, OpenAIRE's Repository Dashboard or via an API endpoint, which is based on SUSHI-Lite protocol.

Table 4-9: EOSC and Open Science statistics: Research publications, data and software

<table>
<thead>
<tr>
<th>Functions</th>
<th>Description (how the function is built and what it provides)</th>
<th>Added value for EOSC users</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant tracking of views and downloads of open science content providers</td>
<td>Platform dedicated software or generic script is used to track usage events in an anonymised and real time manner.</td>
<td>Statistics on usage activity</td>
<td>OpenAIRE UsageCounts</td>
</tr>
<tr>
<td>Collection of aggregated usage statistics reports</td>
<td>Usage statistics are collected from sources like national aggregators, without the need to install tracking software at each node (e.g repositories). Dedicated software that exploits the SUSHI-Lite protocol is used to collect the reports.</td>
<td>Access to aggregated usage statistics reports</td>
<td>OpenAIRE UsageCounts</td>
</tr>
<tr>
<td>Provision of standardised usage statistics reports compliant with the COUNTER CoP</td>
<td>An open source API, based on SUSHI-Lite protocol and the COUNTER code of practice, is used to publish the reports.</td>
<td>Access to impact indicators for research products, which allows evaluation of research from an early stage. Access to evidence-based analytical metrics of views and downloads, aggregated from all over the world. Enables comparability with statistics from other data sources</td>
<td>OpenAIRE UsageCounts</td>
</tr>
</tbody>
</table>
4.5 Helpdesk

The helpdesk is an essential service in any IT infrastructure to provide efficient support for its services. It is used as an entry point for users and should implement incident and request management and provide an efficient communication channel between customers, users and providers of the IT resources and services.

The EOSC Helpdesk works as a unified ticketing system by managing the requests related to different Core services operated by different providers. The EOSC helpdesk effectively supports customers in communication with EOSC. It provides a personal dashboard, history and current status of submitted requests. It enables an effective first level of support, which is connected with multiple support units for single EOSC Core service. The EOSC Helpdesk can be also integrated with third-party helpdesks, so that tickets could seamlessly propagate to the dedicated helpdesk after submission in the EOSC Helpdesk if required. It is currently already integrated with EGI and EUDAT Helpdesks. The main functional units of the helpdesk, interactions between them and ticket workflows are shown in Figure 4.6.

![Figure 4.6: Functional architecture of the EOSC Helpdesk](image)

So far, the EOSC Helpdesk was focused on providing support mainly for EOSC-Core services and has been integrated with EGI and EUDAT helpdesks to manage the requests to the services of the dedicated infrastructures. The established support unit structure of the EOSC Helpdesk is currently being adopted according to the requirements of the EOSC Future project.

In the EOSC Future the integration of further helpdesks and services will be performed with a focus on providing the EOSC Helpdesk as a service to the EOSC communities to facilitate communication, support and integrity of the EOSC infrastructure.

The EOSC helpdesk is provided as a service for EOSC service providers, communities and users and supports three main usage scenarios:

- **Direct Usage**: Use the EOSC helpdesk directly as the ticketing system. This scenario is to be implemented when a provider does not have its own helpdesk and would like to use EOSC Helpdesk to manage the user requests, addressed to the community services. In this case, the community obtains a support unit or a set of support units for its own disposal.

- **Ticket Redirection**: Use the EOSC helpdesk only as a contact point to redirect the entry request for the specific service to a mailing list or 2nd level ticketing system. In this case, the EOSC Helpdesk central service would simply redirect by e-mail or via API the incoming tickets to the external system directly managed by the provider.

- **Full Integration**: Bi-directional integration of the community ticketing system with the EOSC helpdesk, which means the full synchronisation of the content between the two systems. In this scenario, the community tickets can be managed in any of the two helpdesks. For example, the ticket
which initially has been opened in the EOSC Helpdesk is propagated to community helpdesk and all changes done for this ticket in community helpdesk are visible also in EOSC Helpdesk.

Table 4.10 provides the description of the main functions currently implemented in the EOSC Helpdesk.

### Table 4.10: EOSC Helpdesk

<table>
<thead>
<tr>
<th>Functions</th>
<th>Description (how the function is built and what it provides)</th>
<th>Added value for EOSC users</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creation of a ticket using helpdesk interface</td>
<td>The ability for the requester to create, view or modify ticket using helpdesk dashboard</td>
<td>Users could create and manage tickets centrally in EOSC Helpdesk.</td>
<td>EOSC-hub Helpdesk</td>
</tr>
<tr>
<td>Creation of a ticket via webform or mail</td>
<td>The ability to create ticket without AAI login by filling a webform or sending an e-mail</td>
<td>Allows users to send requests without accessing or login to the helpdesk system directly from the webpage of dedicated service in use e.g. Marketplace</td>
<td>EOSC-hub Helpdesk</td>
</tr>
<tr>
<td>Search filters</td>
<td>The ability to search any ticket or group of tickets according to the filter or set of the filters using the search interface</td>
<td>Users could search, sort their tickets based on multiple search criteria and obtain a better overview of their tickets.</td>
<td>EOSC-hub Helpdesk</td>
</tr>
<tr>
<td>Notification</td>
<td>The function allows to notify the ticket submitter, owner or anyone subscribed to the ticket about the ticket modification.</td>
<td>Keeps users informed about any change or final solution of the request.</td>
<td>EOSC-hub Helpdesk</td>
</tr>
<tr>
<td>Creation of a new support unit</td>
<td>Any EOSC provider could manage support units for any entity like service, service group, team of developers etc.</td>
<td>EOSC providers could use helpdesk as service to manage support for services for their users</td>
<td>EOSC-hub Helpdesk</td>
</tr>
<tr>
<td>API Interface</td>
<td>An API interface implemented via SOAP which allows communication between helpdesk and other services</td>
<td>EOSC providers could integrated their helpdesk systems or other services with EOSC Helpdesk</td>
<td>EOSC-hub Helpdesk</td>
</tr>
</tbody>
</table>

### 4.6 EOSC Monitoring

The EOSC service availability and reliability monitoring (EOSC Monitoring) is a key service needed to gain insights into an infrastructure, the applications, services, and even into processes/behaviours. The EOSC Monitoring has been implemented in EOSC-hub through ARGO. It monitors services by emulating typical user scenarios, which allows them to infer the quality of service the actual user gets. It mimics the actual end-user behaviour without requiring special privileges or special configurations from the service provider side. As a result, ARGO offers near real-time status updates which allow both end-users and site admins to have an overview of the service offered at any given point in time. The major objective of the monitoring system is to quickly identify and correlate problems before they affect end-users and ultimately the productivity of the services, the infrastructure and, finally, the organisation.

The high-level architecture of the EOSC Monitoring is shown in the following figure. The service collects status (metrics) results from one or more monitoring engine(s) and delivers daily and/or monthly availability (A) and reliability (R) results of distributed services. Both status results and A/R metrics are presented through a Web
UI, with the ability for a user to drill down from the availability of a site to individual test results that contributed to the computed figure.

**Figure 4.7: High-level architecture of a monitoring service**

<table>
<thead>
<tr>
<th>Functions</th>
<th>Description (how the function is built and what it provides)</th>
<th>Added value for EOSC users</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get topology from the EOSC CMDB sources</td>
<td>Ability to automatically ingest topology items and their organisational hierarchies from EOSC CMDB sources</td>
<td>Easily ingest topology information from EOSC CMDB sources</td>
<td>EOSC-hub monitoring</td>
</tr>
<tr>
<td>Get topology from the EOSC service registry</td>
<td>Ability to automatically ingest topology items and their organisation hierarchies from service registry</td>
<td>Easily ingest topology information from service registry</td>
<td>EOSC Enhance service registry, EOSC-hub monitoring</td>
</tr>
<tr>
<td>Manage Reports</td>
<td>Ability to define reports that produce availability and reliability results based on specific profiles and options. Users with administrative rights can manage reports. Other users may only view the results generated by the report.</td>
<td>Using the same superset of monitored data as origin, users can create different reports based on different criteria (subsets of topology, organisation of hierarchies, thresholds etc) that produce</td>
<td>EOSC-hub monitoring</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
<td>EOSC users benefit</td>
<td>EOSC component</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Get a/r results</td>
<td>Ability to get, for each report, the daily/monthly availability and reliability results produced for monitored services on different levels of hierarchy (service endpoints, services, groups of services).</td>
<td>EOSC users can easily observe the availability and the reliability of services (daily, monthly) they are interested in using.</td>
<td>EOSC-hub monitoring</td>
</tr>
<tr>
<td>Get status results</td>
<td>Ability to get, for each report, the daily/monthly status timeline results produced for monitored services on different levels of hierarchy (service endpoints, services, groups of services).</td>
<td>EOSC users can easily observe the state of services (near real-time) they are interested in using.</td>
<td>EOSC-hub monitoring</td>
</tr>
<tr>
<td>Get trends</td>
<td>Ability to get results produced by analytics that signify various trends such as top items in critical state, or top flapping items (that change states constantly).</td>
<td>EOSC users can get valuable insights on emerging patterns and trends among the services they are interested in.</td>
<td>EOSC-hub monitoring</td>
</tr>
<tr>
<td>Issue a recomputation request</td>
<td>Ability to issue a recomputation request for a specific past date in order to exclude items from the results due to configuration issues between checked items and monitoring service</td>
<td>Ensures consistent compute data even after disputes from service owners</td>
<td>EOSC-hub monitoring</td>
</tr>
<tr>
<td>Manage metric profiles</td>
<td>Ability to manage metric profiles (per report) that define which services and checks are relevant and should be taken into account when producing the status and A/R results. The user with administrative rights can easily create reports that keep services and metric checks that the user deems relevant</td>
<td>Ability to get tailored and focused availability/reliability and status reports containing relevant services and metrics</td>
<td>EOSC-hub monitoring</td>
</tr>
<tr>
<td>Manage aggregation profiles</td>
<td>Ability to manage aggregation profiles per report which instruct specifically in which ways the various monitored items are combined in order to produce results for top level groupings. The users with administrative rights can easily reorganise the way the service endpoints and the service themselves are combined on higher groups (such as group of services) either in a distributed or a highly available way.</td>
<td>Ability to get tailored and focused availability/reliability and status reports with specific organisation of items in higher groups.</td>
<td>EOSC-hub Monitoring</td>
</tr>
</tbody>
</table>
### Manage threshold profiles

Ability to manage threshold profiles. A Threshold profile contains a list of threshold rules. Threshold rules refer to low level monitoring numeric values that accompany metric data in combination with threshold limits applied on those values that can deem the status of the monitoring result as ‘warning’, or ‘critical’ etc. Users with administrative rights can easily define custom thresholds and override defaults from probes.

### Quick View Issues

Ability to quickly view a list with the most problematic monitored items (services, endpoints etc..)

Quickly view the most problematic items of the topology that require attention

### View topology of monitored items

Ability to view (with rich filtering support) topology items such as service endpoints and hierarchical groupings of them such as sites and service groups

Easily view topology information and how it changes from day to day

### View service results

Ability to view availability and reliability and status timeline results scoped to a specific service or service group.

Users such as service owners can access the API and directly view results scoped only for the services they own

### Notifications

Ability to get notified through email about failing or recovering services with rich information on what went wrong

Service owners can quickly get notified about failing components.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>EOSC-hub monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manage threshold profiles</td>
<td>Ability to manage threshold profiles. A Threshold profile contains a list of threshold rules. Threshold rules refer to low level monitoring numeric values that accompany metric data in combination with threshold limits applied on those values that can deem the status of the monitoring result as ‘warning’, or ‘critical’ etc. Users with administrative rights can easily define custom thresholds and override defaults from probes.</td>
<td>EOSC-hub monitoring</td>
</tr>
<tr>
<td>Quick View Issues</td>
<td>Ability to quickly view a list with the most problematic monitored items (services, endpoints etc..)</td>
<td>EOSC-hub monitoring</td>
</tr>
<tr>
<td>View topology of monitored items</td>
<td>Ability to view (with rich filtering support) topology items such as service endpoints and hierarchical groupings of them such as sites and service groups</td>
<td>EOSC-hub monitoring</td>
</tr>
<tr>
<td>View service results</td>
<td>Ability to view availability and reliability and status timeline results scoped to a specific service or service group.</td>
<td>EOSC-hub monitoring</td>
</tr>
<tr>
<td>Notifications</td>
<td>Ability to get notified through email about failing or recovering services with rich information on what went wrong</td>
<td>EOSC-hub monitoring</td>
</tr>
</tbody>
</table>

### 4.6.1 EOSC Monitoring for Core services

EOSC Core Monitoring is the service that provides availability and reliability (A/R) and status reports for all the services that are part of EOSC Core. It gets its topology from the EOSC CMDB sources and probes each service accordingly so as to calculate its A/R scores and status timelines.

The functions of EOSC Core monitoring are described in the previous section (4.6 EOSC Monitoring)

### 4.6.2 EOSC Monitoring for Exchange services

EOSC Exchange Monitoring is the service that provides availability and reliability (A/R) and status reports for all services onboarded to EOSC. It gets its topology from the EOSC service registry and probes each service accordingly in order to calculate its A/R scores and status timelines. EOSC-Exchange monitoring should also be capable of consuming results from external monitoring services from existing e-infrastructures and other external sources.

This service should also be capable of exporting results via an API to all service owners and other external systems/portals.

The functions of EOSC Exchange monitoring are described in the previous section (4.6 EOSC Monitoring)
4.7 EOSC Messaging

The Messaging service is a real-time messaging service that allows the user to send and receive messages between independent applications. It is implemented as a publish/subscribe service. Instead of focusing on a single messaging service specification for handling the logic of publishing/subscribing to the broker network, the service focuses on creating nodes of publishers and subscribers as a service. In the publish/subscribe paradigm, publishers are users/systems that can send messages to named-channels called topics. Subscribers are users/systems that create subscriptions to specific topics and receive messages.

EOSC Core is a distributed system of systems. A Messaging service is therefore required to integrate these individual systems into a coherent EOSC Core. Messaging is used as a transport layer for the integration between different core services. The main services that are using the messaging are:

- **Accounting**: it adopted the messaging as a transport layer for collecting accounting data from the various service providers. The accounting information is gathered from different collectors into a central accounting repository, where it is processed to generate statistical summaries that are available through the accounting portal.
- **Monitoring service**: it uses the Messaging service to send the messages from the monitoring engine to its components, and or to send the monitoring data to external services.

Adoption of the Messaging service from other EOSC Core services will be assessed during the project lifetime.

*Table 4.12: EOSC Messaging*

<table>
<thead>
<tr>
<th>Functions</th>
<th>Description (how the function is built and what it provides)</th>
<th>Added value for EOSC users</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publishing Messages to the Messaging Service</td>
<td>The service provides an API that can be used to publish messages.</td>
<td>Provide a transport layer &amp; cache mechanism between services</td>
<td>EOSC-hub Messaging</td>
</tr>
<tr>
<td>Consuming messages from the Messaging Service</td>
<td>The service provides an API that can be used to consume messages.</td>
<td>Provide a transport layer &amp; Cache mechanism between services</td>
<td>EOSC-hub Messaging</td>
</tr>
<tr>
<td>Provide publishing and consumption metrics</td>
<td>Messaging provides various metrics on publishing and consumption actions such as number of messages, size of data, transport rates etc.</td>
<td>Easy to view statistics about publishing and consumption activities</td>
<td>EOSC-hub Monitoring, EOSC-hub Messaging</td>
</tr>
<tr>
<td>Ability to replay published messages</td>
<td>Messaging provides mechanisms for consumers to replay old messages and re-consume them again.</td>
<td>Ability to reprocess old messages on demand based on reference points using specific message ids or publishing dates</td>
<td>EOSC-hub Messaging</td>
</tr>
<tr>
<td>Push messages automatically to verified remote endpoints</td>
<td>Messaging provides the ability to use push subscriptions attached to topics so as to automatically forward published messages to verified remote endpoints</td>
<td>Ability to use messaging to easily create reactive systems that publish messages automatically to remote endpoints and thus avoiding polling mechanisms on the consumer side</td>
<td>EOSC-hub Messaging</td>
</tr>
<tr>
<td>Sites publish messages to accounting project</td>
<td>The sites accounting data follow a predefined format and are published in a predefined format. The accounting may calculate the statistics.</td>
<td>Enable easy publishing of data so the accounting may calculate the statistics.</td>
<td>EOSC-hub Accounting, EOSC-hub Messaging</td>
</tr>
<tr>
<td><strong>in the messaging Service</strong></td>
<td>topic name in the messaging service.</td>
<td>consumption of the services of the site.</td>
<td>EOSC-hub Accounting, EOSC-hub Messaging</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>------------------------------------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td><strong>Accounting consumes messages related to accounting data from Sites.</strong></td>
<td>The accounting service is consuming the messages from the messaging service.</td>
<td>Easily consume data via messaging so the accounting may calculate the consumption of the services of the Site.</td>
<td>EOSC-hub Accounting, EOSC-hub Messaging</td>
</tr>
<tr>
<td><strong>Monitoring engines publish monitoring data to Monitoring-analytics engine</strong></td>
<td>Monitoring engines use messaging to publish monitoring data to be gathered from monitoring analytics engine</td>
<td>Easily publish data from different monitoring sources to a final destination for analytics and report generation</td>
<td>EOSC-hub Monitoring, EOSC-hub Messaging</td>
</tr>
<tr>
<td><strong>Monitoring-analytics engine consumes monitoring data</strong></td>
<td>Monitoring analytics engine uses messaging to consume (gather) monitoring data published from monitoring engines</td>
<td>Easily gather data from different sources to a central destination to perform analytics and generate reports</td>
<td>EOSC-hub Monitoring, EOSC-hub Messaging</td>
</tr>
<tr>
<td><strong>Republish monitoring data for specific sites.</strong></td>
<td>Republisher script that consumes and publishes (distributes) messages to specific topics (e.g. sites).</td>
<td>Can easily have access to the monitoring data.</td>
<td>EOSC-hub Monitoring, EOSC-hub Messaging</td>
</tr>
</tbody>
</table>
5 Technical Architecture

This section describes the technical architecture of the EOSC Core Back-Office. For each functional component identified in the previous sections, the selected background components are introduced with a short description, a list of the main features and other relevant information (e.g. link to documentation). In addition, for each of these background components, a technical roadmap was defined. It identifies the technical work needed, from one side, to enhance the components and fill the gaps to satisfy the requirements and, for the other side, the interfaces and API needed to connect the component to the others components with the aim to create a homogeneous and coherent EOSC Core Back-Office platform.

5.1 EOSC Resource Catalogue

The EOSC Resource Catalogue will consist of three components, the EOSC provider portal, the EOSC service catalogue and the EOSC-RG, as described in the functional architecture of the service, as depicted in Figure 5.1. The components will be delivered by combining the efforts of EOSC Enhance and OpenAIRE-Advance in providing respectively a Service Registry/Provider Portal and a Research Product Catalogue and onboarding services. The goal is to continue the operation of the existing services (doing the needed optimisations), integrating their data and extending their APIs and UIs where necessary, to offer EOSC users single access points where necessary, without unnecessarily disrupting their current practices.

The following sections describe how the OpenAIRE and EOSC Enhance components will be adapted and combined to deliver the EOSC Resource Catalogue, and provide the technical features of the existing components: EOSC Service Registry (Table 5.1, Table 3.1), EOSC Provider Portal (Table 5.2), EOSC-RG (Table 5.3, Table 5.4).

5.1.1 EOSC Research Graph (EOSC-RG)

User interfaces for discovery and access to the EOSC-RG are to be implemented by WP5 and are not a subject of this deliverable. The EOSC discovery portal to be realized in WP5 will interact with the EOSC-RG, via the APIs of the OpenAIRE Research Graph, which will instead focus on data delivery and APIs.
5.1.1.1 Data model and Content

The EOSC-RG will be the result of integrating the EOSC Enhance Service Registry and the EOSC Provider Portal as data sources of the OpenAIRE Research Graph. Specifically:

- The OpenAIRE Graph is a metadata knowledge graph keeping an up-to-date map of the scientific/scholarly communication record. It contains information about research products (publications, datasets, software, and other products), the related data sources (repositories, databases, publishers, etc. where the research product is made available), funders (EC, European countries, and international funders), the related projects, authors (ORCID), and organisations (ROR, GRID, OrgReg, ISNI, PIC, etc.).
- The EOSC Enhance Provider portal maintains a list of organisations entitled to become EOSC providers, that is registering (onboarding) their services and research products.
- The EOSC Enhance Service Registry maintains a list of service profiles, as published by EOSC providers and curated by EOSC staff.

OpenAIRE Research Graph’s integration and extension roadmap

- The OpenAIRE Graph will extend its data model to include EOSC Service entities. Today the Graph includes Data Sources, which are de facto services. The entity will be extended to model the more generic concept of ‘service’ and capture the special condition of ‘data source’ where it applies. The EOSC Service Description Template will be used to model the Service Entity in the Graph.
- The EOSC Service Registry will be included as a data source of the Graph, and workflows for metadata collection (harvesting) and integration in the Graph will have to be developed.
- The EOSC Provider database will be included as a data source of the Graph, and workflows for metadata collection (harvesting) and integration in the Graph will have to be developed. Most importantly, deduplication workflows will have to be configured, to make sure EOSC providers map onto existing PIDs for organisations included in OpenAIRE (ROR, GRID, ISNI, PIC, etc.).

EOSC Enhance Service Registry’s integration and extension roadmap

- The EOSC Enhance Service Registry will push its content to the OpenAIRE Graph, to keep it in sync with additions, removals, and updates. EOSC services will appear as nodes in the OpenAIRE Graph, as well as their relationships to organizations that are EOSC providers.
- The EOSC Enhance Service Registry will update its data model to include: (i) PIDs for services (more than one) and (ii) the data source subclass.

5.1.1.2 APIs

OpenAIRE Research Graph’s integration and extension roadmap

- The OpenAIRE Graph will adapt its APIs to offer search, browse, and navigation functionalities (i.e. link resolution) that take into account services (and EOSC Interoperability Frameworks in the future).
- The OpenAIRE Graph will deliver APIs (or data dumps) that meet/address the specific discovery needs of the EOSC portal to be developed in WP5.

EOSC Enhance Service Registry’s integration and extension roadmap

- The EOSC Enhance Service registry will update its data model to ensure the milestones regarding ‘access to EOSC portals/catalogue’, ‘access to INFRAEOSC-07 services’, and ‘access to horizontal services’ can be demonstrated.
5.1.2 EOSC Provider Portal

5.1.2.1 Data model and actual content

EOSC Enhance Provider Portal’s integration and extension roadmap

- The EOSC Enhance Provider database will have to adapt its data model to include PIDs for organizations (more than one); in the case of EOSC providers that do NOT have a PID, specific policies will have to be defined (e.g. ‘obligation to register to one of the authorities endorsed by the EOSC’).
- The EOSC Enhance Provider Portal will push its content to the OpenAIRE Graph, to make sure EOSC providers will appear and be properly linked to the related EOSC services.

OpenAIRE PROVIDE’s integration and extension roadmap

- OpenAIRE PROVIDE\(^1\) today deliver UIs for the registration, validation, and management of EOSC data source profiles; the functions are intended to check the compliance to the OpenAIRE Guidelines of the metadata records of the products exposed (made harvestable) by a given data source.
- The Service needs to make sure that registered and validated data sources willing to be part of the Graph can be eligible to become EOSC services. In such cases, and prior request of the data source manager, OpenAIRE’s PROVIDE will register the data source as a service in the EOSC Service Registry. To this extent, OpenAIRE’s PROVIDE must become a trusted catalogue for the EOSC, via formal agreements, operational plans, etc.

5.1.2.2 User Interfaces

EOSC Enhance Provider Portal’s integration and extension roadmap

The EOSC Enhance Portal Provider will be extended to manage data source profiles. The registration policy of data sources across the Service Registry, and PROVIDE is yet to be agreed on, but two flows are envisaged, as described below.

From Provider’s Portal to Service Registry and PROVIDE: data sources services are registered via the Service Registry.

- When a provider registers a data source, the Portal will access OpenAIRE’s PROVIDE APIs to access the list of data sources available out there and pick the service profile of the one of interest (today OpenAIRE refers to re3data.org, OpenDOAR, and FAIRsharing). The Provider’s Portal will then proceed to the registration of the data source to the Service Registry, by tracking all PIDs related with the data sources and also the OpenAIRE ID.
- The Service Registry UIs will be updated to allow the provider of data source service to open the relative pages in the OpenAIRE’s PROVIDE and proceed with the registration/validation of the research products for inclusion in the EOSC-RG (via the OpenAIRE Research Graph).

From PROVIDE to Service Registry: data source services registered via PROVIDE

- PROVIDE UIs will request the data source managers, who registered and successfully validated data sources for the OpenAIRE Graph, to register the data source services to the EOSC Service Registry. In the case of positive response, PROVIDE will register the data source profile to the EOSC Service Registry on behalf of the data source manager. OpenAIRE’s PROVIDE de facto becomes a trusted in-sync catalogue for the EOSC (for the set of validated data sources willing to appear in the EOSC-Exchange).

\(^1\)http://provide.openaire.eu
Table 5-1: EOSC Enhance Service Registry technical features

<table>
<thead>
<tr>
<th>Component Name</th>
<th>EOSC Enhance Service Registry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short description</td>
<td>The Service Registry is the storage component offering the necessary programmatic interfaces for the addition, modification, and access to information regarding providers, resources and user activity collected in EOSC portal. It contains:</td>
</tr>
<tr>
<td></td>
<td>● Information for resources and providers entered by providers during the onboarding process based on the EOSC profiles schema.</td>
</tr>
<tr>
<td></td>
<td>● Information collected by the interaction of providers with the portal and specifically with the Providers Component for the management and customisation of their offering. Such information includes updates and changes applied to a resource offered by a provider.</td>
</tr>
<tr>
<td></td>
<td>● Information collected by the interaction of the end users with the Portal and specifically with the End User Component, including statistics for the end user visitation, orders, personalisation features such as user ratings, favourites, user profiles.</td>
</tr>
<tr>
<td></td>
<td>● Registry administration, which offers functionality to validate/approve/curate the contents of the EOSC Service Registry. More specifically, it offers functionality for the EOSC Portal Onboarding team to manage incoming requests for the validation of a provider’s or a resource registration, as well as perform a series of quality controls in the contents of the registry.</td>
</tr>
<tr>
<td></td>
<td>● REST APIs (for enabling synchronous communication). All registry content is available in the form of open REST APIs in <a href="https://api.eosc-portal.eu/openapi">https://api.eosc-portal.eu/openapi</a> for both XML and JSON representation schemas. In general, all get methods are open, whereas POST and PUT require an API key.</td>
</tr>
<tr>
<td></td>
<td>● Apache Active MQ⁴ (for enabling asynchronous communication). An SSL JMS messaging service enables the subscription of clients to registry-generating events, regarding CRUD operations on providers and resources.</td>
</tr>
<tr>
<td></td>
<td>● ResourceSync⁵ (for enabling harvesting). The registry offers a resource sync API, which can be harvested by external systems - harvesters.</td>
</tr>
</tbody>
</table>

Main features

- EOSC profiles management (vocabularies, schema, etc);
- Onboarding of Providers and Resources to EOSC via APIs;
- Management of Providers and Resources records to EOSC via APIs;
- Validation mechanism via the APIs;
- EOSC portal Id assigned to resources and providers;
- Versioning of providers\resources;
- Messaging (JMS) of CRUD events for 3rd party consumers;
- Authorisation of provider users, and EPOT team.

URLs

- EOSC Portal API: https://providers.eosc-portal.eu/openapi
- EOSC API Sandbox https://sandbox.providers.eosc-portal.eu/openapi
- EOSC API Beta https://beta.providers.eosc-portal.eu/openapi
- EOSC API base URL: https://api.eosc-portal.eu/

---

⁴ http://activemq.apache.org/
⁵ http://www.openarchives.org/rs/toc
**Documentation**

- API: [https://providers.eosc-portal.eu/developers](https://providers.eosc-portal.eu/developers)
- GitHub: [https://github.com/madgeek-arc/resource-catalogue](https://github.com/madgeek-arc/resource-catalogue)

**API types and use-cases**

- **EOSC API base URL:** [https://api.eosc-portal.eu/](https://api.eosc-portal.eu/)

**API Calls and examples:**

**Provider Controller (API):**

- `put /provider`: updates the provider assigned the given id with the given provider, keeping a version of revisions.
- `get /provider/all`: filter a list of Providers based on a set of filters or get a list of all providers in the catalogue.
- `get /provider/services/[id]`: Get a list of services offered by a provider.
- `get /provider/[id]`: Returns the provider with the given id.

**Resource API:**

- `post /resource`: creates a new Resource.
- `put /resource`: updates the resource assigned the given id with the given resource, keeping a version of revisions.
- `post /resource/validate`: validates the resource without actually changing the repository.
- `get /resource/[id]`: get the most current version of a specific Resource, providing the resource id.
- `get /resource/all`: filter a list of resources based on a set of filters or get a list of all resources in the Catalogue.
- `get /resource/by/[field]`: get all resources in the catalogue organised by an attribute, e.g. get Resources organised in categories.
- `get /resource/byID/[ids]`: get a list of resources based on a set of ids.
- `get /resource/[id]/[version]`: get the specified version of a resource, providing the resource id and version.

**EOSC Profiles Controlled Vocabulary API:**

- `get /vocabulary/byType`: get all vocabulary entries organised per type.
- `get /vocabulary/byType/[type]`: get a list of vocabulary entries for the given specific type.
- `get /vocabulary/[id]`: get a vocabulary entry by id.
- `get /vocabulary/countries/EU`: returns a list of EU countries.
- `get /vocabulary/countries/WW`: Returns a list of WW countries.

**EOSC Future components expected to interact with this component**

- EOSC Marketplace: consumes registry (resource, providers) entries.
- EOSC Marketplace: provides user events.
- EOSC order Management: provides order events for resources of a provider.
- EOSC IF database: provides connections between registry resources.
- Provider Portal: provider onboarding, resource management, and EPOT operations over the service registry.
- Marketplace: offering monitoring data via API.
- EOSC Exchange systems: CRUD operations via API for updating \ syncing the registry.

<table>
<thead>
<tr>
<th>Component Name</th>
<th>EOSC Enhance Provider portal</th>
</tr>
</thead>
</table>

*Table 5-2: EOSC Enhance Provider Portal technical features*
The **Provider Portal** offers functionality to users representing a Provider organisation, who wish to onboard their organisation and onboard resources in the EOSC Portal registry, to manage and customise the way offerings are presented to end users and finally to gain insights on a multitude of usage statistics, user-generated events and statistics collected in the Portal. Offered functionality include:

- **Onboarding services**, which implements the EOSC portal onboarding process, i.e., the registration of a new provider and the registration of Resources managed by a provider. The onboarding services will target authenticated users who will be able to onboard either via a Web-based step-wise process or programmatically by using the EOSC registry's APIs.

- **Resource management service**: It offers the functionality for users to view the list of resources assigned to their organization and manage all characteristics of their offerings. Resource management will also enable users to ‘activate’/’deactivate’ a resource in the EOSC Portal, to assign it to categories or other classification schemes (e.g., scientific domain, TRL, etc.), to manage the different versions of a resource and add new users who will be responsible for managing the offerings of a provider.

- **Providers Dashboard**: it serves as the UI entry point of a provider's users. The dashboard offers an overview to the users for the list of providers, it represents the list of resources and their properties including a history of changes applied to a resource. The dashboard will also give access to a rich set of statistics, which are collected by the EOSC portal and will be associated with resources and providers onboarded in the EOSC Registry. These include usage statistics, such as views and visits for a resource, aggregated views and visits for all resources offered by a provider, search-related statistics which are associated with a provider, orders placed for a resource, ratings, recommendations offered to users related to a resource and finally favourites that users add in the EOSC portal.

- **Statistics** over the content of the registry, organised by resources and providers, such as number of resources per scientific discipline, providers per country, etc.

### Main features

**For providers:**
- Onboarding;
- Management of resources;
- Live usage statistics from the eosc Portal;
- Email notifications;
- Interaction with EPOT team.

**For EPOT team members:**
- Onboarding management;
- Auditing and registry management;
- Email digest and interaction with providers.

**For other users (funders EOSC profiles management (vocabularies, schema, etc):**
- Statistics.

### URLs

- EOSC Provider entry point: [https://providers.eosc-portal.eu/](https://providers.eosc-portal.eu/)
- EOSC Provider Sandbox: [https://sandbox.providers.eosc-portal.eu/](https://sandbox.providers.eosc-portal.eu/)
- EOSC Provider Beta: [https://beta.providers.eosc-portal.eu/](https://beta.providers.eosc-portal.eu/)
- EOSC portal API: [https://providers.eosc-portal.eu/openapi](https://providers.eosc-portal.eu/openapi)
EOSC API base URL: [https://api.eosc-portal.eu/](https://api.eosc-portal.eu/)

**UI Documentation:**

**API:**
[https://providers.eosc-portal.eu/developers](https://providers.eosc-portal.eu/developers)

**GitHub:**
[https://github.com/madgeek-arc/resource-catalogue](https://github.com/madgeek-arc/resource-catalogue)

**EOSC API base URL:**
[https://api.eosc-portal.eu/[method]](https://api.eosc-portal.eu/[method])

**API Calls and examples:**

**Provider Controller (API):**
- **put /provider:** updates the provider assigned the given id with the given Provider, keeping a version of revisions.
- **get /provider/all:** filter a list of providers based on a set of filters or get a list of all providers in the catalogue.
- **get /provider/services/[id] :** get a list of services offered by a Provider.
- **get /provider/[id] :** returns the Provider with the given id.

**Resource API:**
- **post /resource:** creates a new resource.
- **put /resource:** updates the resource assigned the given id with the given Resource, keeping a version of revisions.
- **post /resource/validate:** validates the resource without actually changing the repository.
- **get /resource/[id]:** get the most current version of a specific Resource, providing the resource id.
- **get /resource/all:** filter a list of resources based on a set of filters or get a list of all resources in the catalogue.
- **get /resource/by/[field]:** get all resources in the catalogue organised by an attribute, e.g. get Resources organised in categories.
- **get /resource/byID/[ids]:** get a list of resources based on a set of ids.
- **get /resource/[id]/[version]:** get the specified version of a resource, providing the resource id and version.

**EOSC profiles controlled vocabulary API:**
- **get /vocabulary/byType:** get all vocabulary entries organised per type.
- **get /vocabulary/byType/[type]:** get a list of vocabulary entries for the given specific type.
- **get /vocabulary/[id]:** get a vocabulary entry by id.
- **get /vocabulary/countries/EU:** returns a list of EU countries.
- **get /vocabulary/countries/WW:** returns a list of WW countries.

**EOSC Service Registry APIs:** CRUd operations to Service registry

**EOSC Marketplace:** consumes registry (resource, providers) entries

**EOSC Marketplace:** provides user events

**EOSC Order Management:** provides order events for resources of a provider

**EOSC IF database:** provides connections between registry resources

**Marketplace:** offering monitoring data via API

**EOSC Exchange systems:** CRUd operations via API for updating/syncing the registry

---

**Table 5-3: OpenAIRE Research Graph technical features**

<table>
<thead>
<tr>
<th>Component Name</th>
<th>OpenAIRE Research Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short description</td>
<td>The Research Graph is a public, open access, collection of metadata and semantic links (~1bn) between research-related entities collected from data</td>
</tr>
</tbody>
</table>
sources (2,400+) or inferred from PDFs (14m+). Entities are research products, namely articles (124m+), datasets (14m+), software (200K+), and other research products (8m+), organisations (250,000), funders (~25), funding streams, projects (3.2m+), research communities (7), and data sources (~80k).

### Main features

**Content acquisition**
- The Graph content is constantly (scheduled jobs) aggregated from the data sources.
- Data sources are of different kinds: publishers, data repos, databases (PDB, ENA, etc.), institutional repos, thematic repos (ArXiv, EuropePMC, Repec, etc), preprint servers, software repos, entity registries (ORCID, ROR, Crossref, DataCite, GRID.ac, OpenDOAR, re3data, PDBs, etc).
- The Graph index is published bi-weekly, being the result of harmonizing, deduplicating, and enriching the harvested metadata by mining.
- Selected data sources, while still being regularly aggregated, can be kept in-sync real-time with the index.

**Access to content**
- The Graph is open and accessible via APIs and data dumps in Zenodo.
- The Graph is accessible via discovery portals for communities and generic users.

### URLs

- Graph informative site: [http://graph.openaire.eu](http://graph.openaire.eu)
- Graph discovery website: [http://explore.openaire.eu](http://explore.openaire.eu) (all users), [http://connect.openaire.eu](http://connect.openaire.eu) (scientific communities)
- Graph APIs: [https://develop.openaire.eu](https://develop.openaire.eu)
- Graph dataset dumps: [https://develop.openaire.eu/graph-dumps.html](https://develop.openaire.eu/graph-dumps.html)

### Documentation

- [https://develop.openaire.eu](https://develop.openaire.eu)

### API types and use-cases

- Resolution of records by id/PID: website widgets (e.g. project websites to collect related publications), European Commission Participant Portal to recommend project publications to project coordinators.
- Query on APIs to collect list of records: DSpace and ePrints platforms to collect list of projects from deposition UIs.
- Download of data dumps: Elsevier, Springer, researchers, download the data to integrate with their services or perform data analysis.

### EOSC Future components expected to interact with this component

**Graph as a consumer: data sources**
- EOSC Service registry: services to become entities of the graph (extension of the current ‘data source’ type); regular harvesting, but also in-sync with Graph index (updates to the registry are sent to the index).
- EOSC IF database: regular harvesting of EOSC IFs as research products (identify proper resource product type).
- Data Usage Statistics (downloads and views of research products): explore the possibility to include stats as part of the information indexed with the data, so as to enable discovery based on stats.
- AI components: embedding as part of the graph index the information to ensure AI discovery is supported (this may require the realisation of extra indexing structures).

Components consuming the Graph
- Marketplace: enabling discovery of EOSC resources via APIs.
- EOSC Portal (consumers/providers): enabling discovery of EOSC resources via APIs.
- AI components: support data provision to enable AI-supported discovery.

### Table 5-4: OpenAIRE PROVIDE technical features

<table>
<thead>
<tr>
<th>Component Name</th>
<th>OpenAIRE PROVIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short description</td>
<td>The OpenAIRE PROVIDE is a one-stop shop web service where content providers (repository, data archive, journal, aggregator, CRIS system) interact with OpenAIRE. It provides the front-end access to many of OpenAIRE’s backend services: register - validate data sources; enrich the metadata or the</td>
</tr>
</tbody>
</table>
content of the data source; assess - subscribe to the OpenAIRE Usage Statistics service.

<table>
<thead>
<tr>
<th>Main features</th>
<th>Validation &amp; registration</th>
</tr>
</thead>
<tbody>
<tr>
<td>The OpenAIRE Validator service allows users to test their repository’s compatibility with the OpenAIRE Guidelines. The set of supported guidelines can be easily modified and adapted to new needs and use cases.</td>
<td><a href="https://www.openaire.eu/validator-registration-guide">https://www.openaire.eu/validator-registration-guide</a>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enrichments</th>
<th>Content enrichment is a powerful tool that enables Content providers to enrich research artefacts with additional metadata through the OpenAIRE Notification Broker Service.</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="https://www.openaire.eu/content-enrichment-guide">https://www.openaire.eu/content-enrichment-guide</a>.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage statistics</th>
<th>OpenAIRE’s Usage Statistic service uses the Matomo open source analytics platform (matomo.org) to track usage activity. It collects and analyzes usage data from the network of OpenAIRE data providers and exploits usage metrics like downloads and metadata views.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>URLs</th>
<th><a href="https://provide.openaire.eu">https://provide.openaire.eu</a></th>
</tr>
</thead>
<tbody>
<tr>
<td>Documentation</td>
<td><a href="https://provide.openaire.eu/about">https://provide.openaire.eu/about</a></td>
</tr>
<tr>
<td>API types and use-cases</td>
<td>No APIs offered to end users</td>
</tr>
<tr>
<td>EOSC-Future components expected to interact with this component</td>
<td>Usage Stats Service</td>
</tr>
<tr>
<td>Provides the usage counts to display in the Provide portal.</td>
<td></td>
</tr>
<tr>
<td>Research Graph</td>
<td>Provides statistics about the graph and also consumes the registered products.</td>
</tr>
</tbody>
</table>

### 5.2 EOSC Service Order Management & Composition

The main prerequisite for setting up ordering for a specific resource is the completion of resource onboarding in the EOSC Portal. The onboarding process, supporting user interfaces and APIs that can be used to onboard resources, are covered by other interoperability guidelines and other providers’ documentation. Each resource can be configured to allow for direct ordering in EOSC Portal via the EOSC Marketplace. Two ways to manage the ordering configuration are available for the use of resource providers. Ordering may be configured either via the EOSC Marketplace user interface for authenticated provider administrators or via the Marketplace offering API. Both methods allow for creating resource offers, configuring technical order parameters and selecting order management systems that will be used to handle resource orders. In order to process the resource orders, a provider can choose the desired method from a selection of tools following the interoperability guidelines for order management. The Service Order Management Back Office (SOMBO) is available for all EOSC resource providers and allows them to instantly manage resource orders. Other interoperability patterns to support other provider-specific or provider community-specific order processing methods exist though. The next paragraphs describe the process of order management integration and interoperability patterns that can be selected to integrate other order management systems.

The configuration of resource ordering allows to instantly manage resource orders with the use of the service management back office. Nevertheless, the ordering process is much more flexible and offers integration methods allowing to meet specific needs of resource providers. The process of preparing integration for other order management systems is independent of resource ordering configuration and may happen in parallel. The first step of integration is to choose the desired integration method from a selection of the available interoperability patterns (see the functional specification). The main entity that allows to set up the integration with the EOSC Marketplace to make other systems interoperable with the ordering process, is an instance of the

---

6 [https://providers.eosc-portal.eu/](https://providers.eosc-portal.eu/)
7 [https://eosc-portal.eu/providers-documentation](https://eosc-portal.eu/providers-documentation)
Order Management System (OMS) registration. An OMS registration is an EOSC Marketplace entity used for authentication and authorisation in the Marketplace Ordering API - documentation available from https://marketplace.eosc-portal.eu/api_docs?subsection=integration_methods. Once the registration is complete, one of the described interoperability patterns may be utilised for order processing by the integrating OMS. The newly registered OMS will also be available for certain providers (or provider communities, depending on the OMS type), and the Marketplace will allow to configure it as the resource OMS while setting up the resource ordering.

The flexible EOSC Marketplace ordering API allows for different levels of integration by third parties, fitting their needs and expectations. Three integration levels, as sketched in Figure 5.2, are presented below and cover most of the identified use-cases.

As mentioned earlier, the EOSC Marketplace offers flexible ways to integrate ordering to improve interoperability. It has an API that is general enough to handle various provider use cases. The integration interface consists of a REST API and an optional asynchronous update trigger endpoint.

There are several ways for providers to integrate their order management processes. One is to use SOMBO to handle user orders. This doesn't incur any implementation cost.

A provider can also use a reference Jira adapter to integrate their Jira instance. This implementation can also be used as a reference to facilitate implementing in-house integrations, such as in the last case. A community integrates their own existing OMS with the EOSC Marketplace ordering process there.

To ensure interoperability, it is paramount that all involved systems are compatible representations of projects, project items (mostly but not exclusively orders) and messages that are general enough to meet their needs. The EOSC Marketplace strives to make as few assumptions about the exchanged data as possible, so as to allow differing use cases.

All of the mentioned integration patterns are elaborated in the following subsections.

5.2.1 Service Order Management Back-Office (SOMBO)

The Service Order Management Back-Office (SOMBO) is a tool designed to track all the orders received by the Marketplace and to propose different actions on these orders. The workflows and connections with other components are shown in Figure 5.3.
For a new order, the tool allows shifters to:

- Analyse the orders;
- Approve/reject the orders;
- Request more information from the customer;
- Exchange information between third parties;
- Start a negotiation process;
- Automatically generate an SLA/OLA from given templates;
- Coordinate (semi-) automatic procedures to enable a customer to access a service.

5.2.2 Order Management process adapters for existing Order Management Systems / reference Jira adapter

Using an OMS adapter is an interoperability pattern utilising a simple service as a mediator in communication between EOSC Marketplace and an existing, possibly closed-source, system (e.g. ticketing system) to manage resource orders. Reference implementation supports integration with the Jira system but any integrator can develop its own compatibility layer with its current ticketing system.

EOSC Marketplace asynchronously informs the adapter about any new activity using an HTTP trigger. Every other communication attempt is handled proactively by the OMS adapter. Usually a ticket management system with which integration occurs informs an OMS adapter to notify the Marketplace about changes, then the adapter calls the Marketplace’s API. In case a change occurs in the Marketplace (new Project / Project Item is created, Message is posted) the Marketplace triggers OMS adapter (every registered OMS adapter has a corresponding trigger configuration) and the adapter performs any necessary calls to the integrating system (ticketing system) to enact that change.

It is in the scope of the OMS adapter to store mappings between Marketplace’s ids and ticketing system ids.

The reference implementation based on the JIRA system\(^9\) contains a Marketplace API client which is responsible for communication with the Marketplace ordering API. It also contains a thin translation layer which maps project Item parameters to fields in Jira. The core philosophy of the system is that it should not, under any circumstances, lose information about ordering changes. To fulfil this goal, all actions are scheduled in the underlying message queue (Celery). This way they can be retried if network errors occur, or in case they fail. They can also be reviewed manually by an operator.

\(^9\) https://github.com/cyfronet-fid/oms-adapter-jira
5.2.3 Marketplace API for Order Management Systems

The most sophisticated integration pattern is to implement direct communication with the EOSC Marketplace. In order to support use cases specific to a certain provider or community of providers, the Marketplace ordering API can be used to manage resource orders. This solution is suitable for setting up interoperaibility between EOSC Marketplace and other existing marketplaces, gateways, infrastructures and services that need the highest flexibility and deepest integration with EOSC Portal. This integration pattern allows providers to create a tailormade resource order-handling solutions and map sophisticated resource provisioning workflows to EOSC Portal-based interaction with its end-users.

As before, the reference implementation should help with integration\(^\text{10}\). It utilises a more general EOSC Marketplace API client, that is the preferred way to integrate\(^\text{11}\). The technical features of the Marketplace components are described in Table 5-5.

**Table 5-5: EOSC Marketplace technical features**

<table>
<thead>
<tr>
<th>Component Name</th>
<th>EOSC Marketplace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main features</td>
<td>• Possibility to offer resources through the EOSC channel</td>
</tr>
<tr>
<td></td>
<td>• Dedicated panels and provider supporting functionalities</td>
</tr>
<tr>
<td></td>
<td>• Functionalities supporting the connection of existing catalogues or order</td>
</tr>
<tr>
<td></td>
<td>management systems</td>
</tr>
<tr>
<td></td>
<td>• Increased (demonstrable) impact of resources delivered (e.g. order statistics)</td>
</tr>
<tr>
<td></td>
<td>⇒ additional funding</td>
</tr>
<tr>
<td></td>
<td>• Access to EOSC resources</td>
</tr>
<tr>
<td></td>
<td>o Discovery</td>
</tr>
<tr>
<td></td>
<td>o Information</td>
</tr>
<tr>
<td></td>
<td>o Access mechanism</td>
</tr>
<tr>
<td></td>
<td>• EOSC support and expertise</td>
</tr>
<tr>
<td></td>
<td>o User requests</td>
</tr>
<tr>
<td></td>
<td>o EOSC experts support</td>
</tr>
<tr>
<td></td>
<td>o EOSC providers support</td>
</tr>
<tr>
<td></td>
<td>• Dedicated functions and panels</td>
</tr>
<tr>
<td></td>
<td>o User profile</td>
</tr>
<tr>
<td></td>
<td>o Marketplace projects</td>
</tr>
<tr>
<td></td>
<td>• Possible access to statistics connected with the interest around EOSC resources</td>
</tr>
<tr>
<td></td>
<td>• Additional source of information about the exploitation of the EOSC resources</td>
</tr>
<tr>
<td></td>
<td>• Lower the marketing and transaction costs considerably compared to targeting</td>
</tr>
<tr>
<td></td>
<td>individual research institutes or researchers.</td>
</tr>
<tr>
<td></td>
<td>• Exposure to EOSC offerings that might enrich enterprise services</td>
</tr>
</tbody>
</table>

| URLs                    | • Service URL: https://marketplace.eosc-portal.eu                              |
|                        | • Source code repository: https://github.com/cyfronet-fid/marketplace          |
|                        | • API documentation: https://marketplace.eosc-portal.eu/api_docs               |
|                        |   docs/swagger/                                                                 |
|                        | • API endpoint: https://marketplace.eosc-portal.eu/api                        |
|                        | • Reference OMS adapter for JIRA system: https://github.com/cyfronet-fid/oms-   |
|                        |   adapter-jira                                                                  |
|                        | • Python API client: https://github.com/cyfronet-fid/marketplace-api-client    |

|                        | • https://www.youtube.com/watch?v=T3G7oyZ52Kc                                   |
| API types and use-cases | • Offering API                                                                   |
|                        |   o Supporting providers’ capabilities to publish information about the         |
|                        |   services’ resources’ offers via a dedicated API. No need to use user          |

\(^{10}\) [https://github.com/cyfronet-fid/oms-adapter-jira](https://github.com/cyfronet-fid/oms-adapter-jira)

\(^{11}\) [https://github.com/cyfronet-fid/marketplace-api-client](https://github.com/cyfronet-fid/marketplace-api-client)
interface for the sake of showing the consumers the service/resource offers
  ○ Allows to create/update/delete the offers
  ○ Allows to manage the technical parameters of the offers which are essential for the order management process

- Ordering API
  ○ API allowing to retrieve information about the customer orders
  ○ Order status handling
  ○ Channel for the user support (user/provider/OMS team messages exchange)
  ○ Passing user details (credentials, SLAs etc)
  ○ Passing MP project details (information about the scientific use case the customer is bringing)

<table>
<thead>
<tr>
<th>EOSC-Future components expected to interact with this component</th>
<th>EOSC Recommender System</th>
<th>EOSC Research Graph</th>
<th>EOSC Service Registry</th>
</tr>
</thead>
</table>

### 5.3 EOSC Statistics and Open Science Statistics

EOSC statistics will be exposed via the EOSC portal to show Open Science trends and indicators, metrics about portal usage, accounting and usage of services and research products. This section describes the technical features of such components, described respectively in Table 5-6, Table 5-7, Table 5-8 and
5.3.1 Open Science Monitor

Open Science monitor back-end and UIs will be integrated into the EOSC portal by interoperating with the OpenAIRE Open Science observatory services, whose technical features are described in Table 5-6.

**Table 5-6: OpenAIRE Open Science Observatory technical features**

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Open Science Monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Short description</strong></td>
<td>The Open Science Observatory presents a collection of</td>
</tr>
<tr>
<td></td>
<td>indicators and visualisations that help interested</td>
</tr>
<tr>
<td></td>
<td>stakeholders (policy makers and research administrators,</td>
</tr>
<tr>
<td></td>
<td>among others) better understand the Open Science landscape</td>
</tr>
<tr>
<td></td>
<td>in Europe across countries and (coming soon) subject</td>
</tr>
<tr>
<td></td>
<td>areas. The platform assists the monitoring, and</td>
</tr>
<tr>
<td></td>
<td>consequently the improvement, of open science policy</td>
</tr>
<tr>
<td></td>
<td>uptake across different dimensions of interest,</td>
</tr>
<tr>
<td></td>
<td>revealing weak spots and hidden potential. Based on the</td>
</tr>
<tr>
<td></td>
<td>OpenAIRE research graph, following open science</td>
</tr>
<tr>
<td></td>
<td>principles and an evidence-based approach, the indicators</td>
</tr>
<tr>
<td></td>
<td>can be used to provide timely and reliable insights on</td>
</tr>
<tr>
<td></td>
<td>the evolution of open science in Europe and assist in</td>
</tr>
<tr>
<td></td>
<td>promoting good practices.</td>
</tr>
<tr>
<td><strong>Main features</strong></td>
<td>End users:</td>
</tr>
<tr>
<td></td>
<td>- Provide indicators and visualisations of the Open</td>
</tr>
<tr>
<td></td>
<td>Science landscape in Europe</td>
</tr>
<tr>
<td><strong>URLs</strong></td>
<td><a href="https://osobservatory.openaire.eu">https://osobservatory.openaire.eu</a></td>
</tr>
<tr>
<td><strong>Documentation</strong></td>
<td><a href="https://osobservatory.openaire.eu/methodology">https://osobservatory.openaire.eu/methodology</a></td>
</tr>
<tr>
<td>**API types and use-</td>
<td>cases**</td>
</tr>
<tr>
<td></td>
<td>Not in place</td>
</tr>
<tr>
<td><strong>EOSC Future components expected to interact with this</strong></td>
<td>As a consumer:</td>
</tr>
<tr>
<td></td>
<td>component**</td>
</tr>
<tr>
<td></td>
<td>- OpenAIRE Graph, to get data for all offered indicators</td>
</tr>
</tbody>
</table>

5.3.2 EOSC Metrics Portal

The EOSC Metrics portal is a portal aggregating data from Google Analytics and the Jira Helpdesk system. These figures are consolidated and provided through different tables and reports. Its technical features are described in Table 5-7.

**Table 5-7: EOSC-Hub Metrics Portal technical features**

<table>
<thead>
<tr>
<th>Component Name</th>
<th>EOSC-Hub Metrics Portal</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Short description</strong></td>
<td>The Metrics portal is a portal aggregating data from Google</td>
</tr>
<tr>
<td></td>
<td>Analytics and the Jira Helpdesk system. These figures</td>
</tr>
<tr>
<td></td>
<td>are consolidated and provided through different tables and</td>
</tr>
<tr>
<td></td>
<td>reports.</td>
</tr>
<tr>
<td><strong>Main features</strong></td>
<td>• Statistics about Service Orders</td>
</tr>
<tr>
<td></td>
<td>• Statistics about Service Providers</td>
</tr>
<tr>
<td></td>
<td>• Statistics about usage (access, pages, views) of the EOSC</td>
</tr>
<tr>
<td></td>
<td>Portal and the EOSC Marketplace</td>
</tr>
<tr>
<td><strong>URLs</strong></td>
<td><a href="https://opsportal.eosc-portal.eu/metrics">https://opsportal.eosc-portal.eu/metrics</a></td>
</tr>
<tr>
<td><strong>Documentation</strong></td>
<td><a href="https://gitlab.in2p3.fr/opsportal/eosc-opsportal/-wikis/EOSC-Metrics">https://gitlab.in2p3.fr/opsportal/eosc-opsportal/-wikis/EOSC-Metrics</a></td>
</tr>
<tr>
<td>**API types and use-</td>
<td>cases**</td>
</tr>
<tr>
<td></td>
<td>Not in place</td>
</tr>
<tr>
<td><strong>EOSC Future components expected to interact with this</strong></td>
<td>All statistics will be provided through API calls</td>
</tr>
</tbody>
</table>
5.3.3 EOSC Service Accounting

5.3.3.1 Service Accounting

The high-level architecture of Service Accounting is shown in Figure 5.4. Resource centres that are providing compute or storage to the EOSC infrastructure have to implement a collector (a stand-alone script or program, or a built-in function of their resource system) that gathers accounting metrics formatted into a standardised record format (see next section for details). These metrics are then transferred either via a messaging service or by being retrieved from an API to the Accounting Repository, which stores and processes the data to produce aggregations that are then sent to the Accounting Portal for display. The messages will have to obey the structure to be defined by the EOSC Accounting Interoperability Framework to be developed in WP3.

The Accounting Portal may optionally retrieve topology information on how resource centres relate to national infrastructures and regions from a configuration management database (CMDB) and community affiliation from the AAI service to adequately organise the accounting data. Information related to groups or Virtual Organizations should also contain information about scientific disciplines to allow the portal to properly classify resource usage.

EOSC Exchange services can either directly publish accounting information to the EOSC central Accounting Repository or via an intermediate repository that can be related to an infrastructure (European, regional, thematic, etc.). It is up to the infrastructure to decide to have its own accounting infrastructure connected to the EOSC one or directly leverage the EOSC accounting infrastructure.

Table 5.8: EOSC-Hub Accounting technical features

<table>
<thead>
<tr>
<th>Component Name</th>
<th>EOSC-Hub Accounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short description</td>
<td>Compute and storage resource usage accounting service</td>
</tr>
<tr>
<td>Main features</td>
<td>Main features offered to the user are:</td>
</tr>
<tr>
<td></td>
<td>● Aggregated views of their usage wherever that usage occurred;</td>
</tr>
<tr>
<td></td>
<td>● Views that allow usage to be checked against allocation.</td>
</tr>
<tr>
<td>Features for resource providers:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Provider-centric views of resource usage by users;</td>
</tr>
<tr>
<td></td>
<td>● Views that allow comparisons to be made between resource providers within and between regions and communities.</td>
</tr>
<tr>
<td>URLs</td>
<td><a href="https://accounting.egi.eu/">https://accounting.egi.eu/</a></td>
</tr>
<tr>
<td>API types and use-cases</td>
<td>ARGO Messaging Service (AMS) push messaging interface - Most accounting records are collected via this method as it allows resilience in the Accounting service.</td>
</tr>
<tr>
<td>EOSC Future components expected to interact with this component</td>
<td>AAI, Service Registry, Messaging</td>
</tr>
</tbody>
</table>

5.3.3.2 EOSC Data Usage Statistics for research publications, data and software

Figure 5.4 shows the high-level architecture of the EOSC Data Usage Statistics services, powered by OpenAIRE UsageCounts services. UsageCounts collects usage data from EOSC data sources, such as institutional/thematic repositories, journals, data repositories, aggregators, discovery portals, etc. Then, it aggregates them, delivering standardised activity reports about research usage and uptake.

Two approaches are exploited for the collection of usage data, named PUSH and PULL, both depicted in Figure 5.4. Push is the default workflow offered by the UsageCounts service in OpenAIRE and allows server sidetracking of events. Open Access repositories embedded tracking code in the form of DSpace plugins, EPrints patches, or generic tracking software that exploit Matomo's analytics platform HTTP API. Usage Activity is tracked and logged at Matomo platform in real time. Information is transferred offline, using Matomo's API,
to OpenAIRE’s DBs for further processing using the COUNTER Code of Practice and statistical analysis. Statistics are subsequently deployed via OpenAIRE’s Portal, OpenAIRE’s Repository Dashboard or Sushi-Lite API endpoint.

A different approach for the UsageCounts service, named Pull and also depicted in Figure 5.4, allows data providers or usage statistics aggregation services (e.g. IRUS-UK) to offer a bulk download method for the usage data. In particular, the Pull approach supports the gathering of consolidated statistics reports using other protocols such as SUSHI-Lite. These statistics are also stored into the OpenAIRE’s database for statistical analysis and are deployed via OpenAIRE’s Portal, OpenAIRE’s Repository Dashboard, or Sushi-Lite API.

Figure 5.4: Data Usage Statistics for the EOSC: UsageCounts high-level architecture
### Table 5-9: OpenAIRE UsageCounts technical features

<table>
<thead>
<tr>
<th>Component Name</th>
<th>OpenAIRE UsageCounts</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Short description</strong></td>
<td>The OpenAIRE UsageCounts service is the usage statistics service of OpenAIRE Research Graph. UsageCounts gathers raw usage activity and consolidated usage statistics reports, respectively, for OpenAIRE Research Graph products and from the network of OpenAIRE content providers (repositories, e-journals, CRIS, national aggregators, etc.). This is realised by utilising open standards and protocols and exploiting reliable, consolidated and comparable usage metrics like counts of products downloads and metadata views conformant to COUNTER Code of Practice.</td>
</tr>
</tbody>
</table>

**Main features**

**Content acquisition**

**PUSH Approach:**
- Server sidetracking: Plugins (Dspace), patches (Eprints), Generic Matomo Tracker script (for all platforms) using Matomo's Web Analytics HTTP API.
- Usage activity is tracked and logged in real time.
- Information is transferred offline to OpenAIRE's databases for aggregation with metadata information and statistical analysis.

**PULL Approach:**
- Gathering of consolidated statistics reports from aggregation services, such as IRUS-UK, using protocols such as SUSHI-Lite.
- Information is transferred offline to OpenAIRE's DBs for aggregation with metadata information and statistical analysis.

**Access to Content**
- Usage statistics Statistics are deployed via OpenAIRE's Portals or a Sushi-Lite API.

**URLs**
- UsageCounts informative website: [http://usagecounts.openaire.eu](http://usagecounts.openaire.eu)
- UsageCounts registration website: [http://provide.openaire.eu](http://provide.openaire.eu)
- UsageCounts discovery website: [http://explore.openaire.eu](http://explore.openaire.eu)
- UsageCounts SushiLite APIs: [https://usagecounts.openaire.eu/resources#apis](https://usagecounts.openaire.eu/resources#apis)

**Documentation**

**API types and use-cases**
- **COUNTER CoP R4 Reports**
  - **AR-1 - Article Report 1**[^12]. This report enables you to view the number of successful article download requests by month and repository.
  - **IR-1 - Item Report 1**[^13]. This report enables you to view the number of successful item download requests by month and repository identifier.
  - **JR-1 - Journal Report 1**[^14]. This report enables you to view the number of successful full-text article requests by month and journal.
  - **RR-1 - Repository Report 1**[^15]. This report enables you to view the number of successful item downloads for all repositories participating in the usage statistics service.
  - **BR-1 - Book Report 1**[^16]. This report enables you to view the number of successful book title requests by month and title.
  - **BR-2 - Book Report 2**[^17]. This report enables you to download the number of successful book section requests by month and title.

[^12]: [https://usagecounts.openaire.eu/sushilite/AR1](https://usagecounts.openaire.eu/sushilite/AR1)
[^13]: [https://usagecounts.openaire.eu/sushilite/IR1](https://usagecounts.openaire.eu/sushilite/IR1)
[^14]: [https://usagecounts.openaire.eu/sushilite/JR1](https://usagecounts.openaire.eu/sushilite/JR1)
[^15]: [https://usagecounts.openaire.eu/sushilite/RR1](https://usagecounts.openaire.eu/sushilite/RR1)
[^16]: [https://usagecounts.openaire.eu/sushilite/BR1](https://usagecounts.openaire.eu/sushilite/BR1)
[^17]: [https://usagecounts.openaire.eu/sushilite/BR2](https://usagecounts.openaire.eu/sushilite/BR2)
**EOSC-Future components expected to interact with this component**

UsageCounts as a consumer: data sources
- EOSC Service registry: services to become entities of the graph (extension of the current ‘data source’ type);
- EOSC IF database: EOSC IFs as research products;
- Monitor & Dashboards: downloads and views of research products.

Components consuming the UsageCounts:
- Marketplace: enabling discovery of EOSC resources usage via APIs;
- EOSC portal (consumers/providers): enabling discovery of EOSC resources usage via APIs.

---

### 5.4 EOSC Helpdesk

After a thorough analysis of multiple helpdesk technologies, we are close to fixing the choice of new helpdesk technology, which will be deployed and adopted instead of current helpdesk technology based on GGUS/xGUS.

The EOSC Helpdesk implemented in EOSC-hub project based on the current GGUS technology includes three layers:

- **Presentation** - web frontend to provide the entry point for the users;
- **Logic** - an AR server which executes the workflow rules and performs the main tasks;
- **Backend** - a layer based on Oracle DBMS.

The new technology we consider for implementation of the new EOSC Helpdesk, if approved by the EOSC Future project, will be based on Zammad technology [https://zammad.com/en]. This technology has several benefits compared to the current GGUS technology like:

- Open source product;
- Modern and responsive interface for customers and agents;
- Support of REST API;
- Knowledge base associated with helpdesk with full-text search, rich text editor;
- Chat functionality for live support.

Figure 5.5 shows the high-level technical architecture of the Helpdesk based on the new technology. The helpdesk will implement all the functions currently available in EOSC Helpdesk based on GGUS/xGUS technology. In addition, the bulk of the new functionality will be added, and multiple integrations with other systems are planned as shown in Figure 5.5.

The EOSC helpdesk will keep already established integrations with EGI and EUDAT helpdesks depicted as ‘GGUS’ and ‘EUDAT RT’ on the diagram and will be integrated with further community helpdesks. In addition, the helpdesk will be integrated with project Jira to propagate the user requests to specific projects and support teams in Jira. The helpdesk will be integrated with multiple EOSC services. Any webpage of the EOSC service could include a submission webform for request as currently implemented on EOSC Portal webpage and Marketplace. The submission of the request via email to the central support unit or dedicated team will also be possible. The helpdesk will be integrated with the EOSC Monitoring service to provide live information about supported services, their production status, availability etc. The helpdesk will be integrated with the EOSC Provider component of the EOSC Portal to enable automatic ticket creation from the Provider Dashboard. Upon community request, the helpdesk can be provided as a service for any EOSC community with a dedicated helpdesk portal and attached community knowledge base.
Figure 5.5: High-level architecture and integrations of the EOSC Helpdesk based on the new technology.

Short technical description of the component (the current or new adopted tool) are provided in Table 5-10.

Table 5-10: EOSC-Hub Helpdesk technical features

<table>
<thead>
<tr>
<th>Component Name</th>
<th>EOSC-hub Helpdesk</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Short description</strong></td>
<td>The EOSC helpdesk is a single point of contact for all EOSC customers for help and support. It is provided for EOSC users to request and obtain support for any problem or issue, and for the EOSC communities as a service to implement user support and incident management.</td>
</tr>
</tbody>
</table>
| **Main features** | The features of the EOSC Helpdesk can be grouped into two target groups: users and helpdesk internal agents or teams. Main features offered to the user are:  
  ● Creation of a ticket for any of the EOSC services (Core and Exchange);  
  ● Display all the tickets created by the owner;  
  ● Find a previously created ticket;  
  ● Notify the user of answers and changes to the tickets;  
  ● Access integrated with the EOSC Portal AAI system;  
  ● Helpdesk knowledge base.  
Features offered to the helpdesk teams are:  
  ● Notification when a new ticket is created;  
  ● Classification of the tickets;  
  ● Escalation of the tickets;  
  ● Creation of a new support unit with the assignation of an administrator role to specific users;  
  ● Management of incident or disruption of Hub services;  
  ● Interface for communicating with other service providers ticketing systems;  
  ● First level support for EOSC integrated services as a service;  
  ● Submission of the tickets via email to any support unit;  
  ● Chat functionality with users;  
  ● Helpdesk knowledge base. |

| URLs | https://helpdesk.eosc-portal.eu/ |
| Documentation | (helpdesk based on GGUS technology) |
5.5 EOSC Monitoring

EOSC Monitoring is based on the ARGO Monitoring Service provides a flexible and scalable framework for monitoring the status, availability and reliability of a wide range of services provided by infrastructures with medium to high complexity. ARGO generates reports using customer-defined profiles (e.g. for SLA management, operations, etc.). During report generation, ARGO takes into account custom factors such as the importance of a specific service endpoint and scheduled or unscheduled downtimes. The foundations of the ARGO Monitoring Service are:

- **Sources of truth** - registries containing information about what should be monitored and how the monitoring should be performed. (Supports predefined format in csv, JSON & XML).
- **Configuration management database** is a registry which contains information about the topology of the infrastructure - entities such as sites, service endpoints, entity organisation (groups, hierarchies) and contact information of users responsible for operations. (Supports predefined format in csv, json & xml).

Management teams can monitor the availability and reliability of the services from a high-level view down to individual system metrics and monitor the conformance of multiple SLAs. The dashboard design enables easy access and visualisation of data for end-users. APIs are also supported so as to allow third parties to gather monitoring data from the system.

The main components of ARGO are:

- **Connectors**: Through the use of custom connectors, the monitoring service can connect to multiple external Configuration Management Databases and Service Catalogs.
- **POEM**: POEM represents a central dashboard (UI) for managing most of the resources used in the Monitoring engine. It follows the principle towards One-Stop-Shop functionality and using web API as a centralised source of truth. It is the central management interface for a provider to prepare all the resources for the monitoring.
- **Analytics Engine**: A powerful and scalable analytics engine built on top of Apache Flink and HDFS. The analytics Engine is responsible for the aggregation of the status results and the computation of availability and reliability scores of composite services using customer-defined algorithms. It supports stream processing in real-time as one of the key features. Monitoring results flow through the Messaging Service, to the streaming layer (in parallel to the HDFS). The streaming layer is used in order to push raw metric results to the metric result store and to compute status results and push them to the status store in real-time.
- **Web API**: The Web API provides the serving layer. It consists of a high-performance and scalable data store and a multi-tenant REST HTTP API, which is used for retrieving the status, availability and reliability reports and the actual raw metric results.
- **Web UI**: The default web UI is based on the Lavoisier Data Aggregation Framework.
- **Notification Service**: The service responsible for sending real-time status events to Service Owners in case of service or service component failure or recovery.

The detailed technical features are listed in Table 5-11.
Table 5-11: EOSC-Hub Monitoring technical features

<table>
<thead>
<tr>
<th>Component Name</th>
<th>EOSC-hub Monitoring - ARGO service availability and reliability monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short description</td>
<td>ARGO provides monitoring of services, visualisation of their status, dashboard interfacing, notification system and generation of availability and reliability reports. The dashboard design enables easy access and visualisation of data for end-users. Third parties can gather monitoring data from the system through a complete API. Central deployment of the ARGO monitoring engine can serve a large infrastructure reducing the maintenance costs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main features</th>
<th>The key features of ARGO Monitoring Service are:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>● Multiple availability and reliability reports per tenant;</td>
</tr>
<tr>
<td></td>
<td>● Multiple tenants;</td>
</tr>
<tr>
<td></td>
<td>● High availability deployment (upon request);</td>
</tr>
<tr>
<td></td>
<td>● Loosely coupled: support APIs in the full stack so that components are independent in their development cycles;</td>
</tr>
<tr>
<td></td>
<td>● Support for topology configurations, metrics and profiles to add flexibility and ease of customisation;</td>
</tr>
<tr>
<td></td>
<td>● Real-time notifications;</td>
</tr>
<tr>
<td></td>
<td>● Customer-defined thresholds;</td>
</tr>
<tr>
<td></td>
<td>● Aggregation of different monitoring sources;</td>
</tr>
<tr>
<td></td>
<td>● Identification of Service trends.</td>
</tr>
</tbody>
</table>

| URLs | ● EOSC Exchange monitoring: [https://argo.eosc-portal.eu/](https://argo.eosc-portal.eu/)
|      | ● EOSC Core monitoring: [https://eosccore.ui.argo.grnet.gr/](https://eosccore.ui.argo.grnet.gr/)
|      | ● API: [https://api.argo.grnet.gr](https://api.argo.grnet.gr) |

| Documentation | ● UI documentation: [https://argo.eosc-portal.eu/eosc/documentation](https://argo.eosc-portal.eu/eosc/documentation)
|               | ● [http://argoeu.github.io/overview/](http://argoeu.github.io/overview/)
|               | ● Web API: [https://argoeu.github.io/argo-web-api/](https://argoeu.github.io/argo-web-api/)
|               | ● POEM: [https://argoeu.github.io/poem/v1/](https://argoeu.github.io/poem/v1/)
|               | ● Web API: [https://argoeu.github.io/api/v2/](https://argoeu.github.io/api/v2/) |

<table>
<thead>
<tr>
<th>API types and use-cases</th>
<th>API Calls and examples:</th>
</tr>
</thead>
</table>
| Results API: | ● Availability & reliability results: [https://argoeu.github.io/argo-web-api/docs/ar_results](https://argoeu.github.io/argo-web-api/docs/ar_results)
| | ● Availability & reliability status timelines: [https://argoeu.github.io/argo-web-api/docs/status_results](https://argoeu.github.io/argo-web-api/docs/status_results)
| | ● Individual metric results: [https://argoeu.github.io/argo-web-api/docs/metric_results](https://argoeu.github.io/argo-web-api/docs/metric_results)
| | ● Issues explorer: [https://argoeu.github.io/argo-web-api/docs/issues](https://argoeu.github.io/argo-web-api/docs/issues)
| | ● Trends [https://argoeu.github.io/argo-web-api/docs/trends](https://argoeu.github.io/argo-web-api/docs/trends)
| | ● Recomputation requests: [https://argoeu.github.io/argo-web-api/docs/recomputations](https://argoeu.github.io/argo-web-api/docs/recomputations) |
| Topology API: | ● Topology statistics: [https://argoeu.github.io/argo-web-api/docs/topology_stats](https://argoeu.github.io/argo-web-api/docs/topology_stats)
| | ● Topology of endpoints: [https://argoeu.github.io/argo-web-api/docs/topology_endpoints](https://argoeu.github.io/argo-web-api/docs/topology_endpoints)
| | ● Topology of higher-level groups: [https://argoeu.github.io/argo-web-api/docs/topology_groups](https://argoeu.github.io/argo-web-api/docs/topology_groups) |
Profiles & Reports API:

- Operations profiles: https://argoeu.github.io/argo-web-api/docs/topology_stats
- Metrics profiles: https://argoeu.github.io/argo-web-api/docs/topology_endpoints
- Aggregation profiles: https://argoeu.github.io/argo-web-api/docs/topology_groups
- Threshold profiles: https://argoeu.github.io/argo-web-api/docs/topology_groups
- Reports: https://argoeu.github.io/argo-web-api/docs/reports
- Weights: https://argoeu.github.io/argo-web-api/docs/weights
- Downtimes: https://argoeu.github.io/argo-web-api/docs/downtimes

EOSC-Future components expected to interact with this component

- EOSC Service Registry: will act as topology source for Argo
- EOSC IF database: EOSC IFs as monitoring data
- Dashboards: offering monitoring data via API
- Marketplace: offering monitoring data via API
- EOSC portal (consumers/providers): will act as topology source for Argo

5.5.1 EOSC Monitoring for Core Services

EOSC Core is the set of services required in order to provide a viable EOSC. EOSC-Core assembles all the essential elements to operate and provide the means to discover, share, access and reuse data and services. These elements address key technical, cultural and policy decisions of EOSC and must be maintained over the long term. The goal of EOSC Core monitoring is to monitor all these services that are part of the EOSC Core so that they are reliable to fulfill their purpose as part of it. The services of the EOSC Core are monitored via the ARGO Monitoring Service. The EOSC Core Monitoring gets its topology from http://gocdb.eosc-portal.eu/ and monitors each component of EOSC Core services accordingly. The results are presented at https://eosccore.ui.argo.grnet.gr/ and are available (with authorisation) from https://api.argo.grnet.gr/. In order for a service to be monitored by EOSC Core Monitoring, one needs to follow a predefined procedure (register service, associate metric etc.).

5.5.2 EOSC Monitoring for Exchange Services

EOSC-Exchange is a set of services built on the EOSC Core to ensure a rich set of services (common and thematic) exploiting FAIR data and encouraging its reuse are available to publicly funded researchers. The goal of EOSC Exchange Monitoring is to check the availability and reliability of services to assist researchers seeking for a service.

The services onboarded to EOSC-Exchange are monitored via the ARGO Monitoring service.

The services are described and grouped (topology of the EOSC-Exchange) in the EOSC Portal, and the EOSC-Exchange Monitoring performs generic checks to verify the availability and reliability of each endpoint listed. The topology is currently sourced from the Marketplace component. It will be retrieved from the Service Registry as soon as the API is available. The services are currently monitored using only generic tests.

As a next step, we foresee to include specific metrics/probes for each service type listed. In parallel, the EOSC Exchange Monitoring Service will integrate data from external monitoring sources (such as those operated by INFRAEOSC-07 projects). In one of the next releases we expect that EOSC Exchange monitoring would be capable of correlating the services monitored externally with their corresponding entries in the Service Registry so as to be able to have in-depth analysis for the availability and reliability of each service offered.

5.6 EOSC Messaging

The EOSC Messaging service is a real-time messaging service that allows the user to send and receive messages between independent applications. It is implemented as a publish/subscribe service. Instead of focusing on a single messaging service, specifications for handling the logic of publishing/subscribing to the broker network
the service focuses on creating nodes of publishers and subscribers as a service. In the publish/subscribe paradigm, publishers are users/systems that can send messages to named channels called topics. Subscribers are users/systems that create subscriptions to specific topics and receive messages.

**Messaging components** The main components of the service are:

a) HaProxy: is the service load balancer.

b) Kafka: is a distributed publish-subscribe messaging system that is designed to be fast, scalable, and durable.

c) Zookeeper: is a centralised service for maintaining configuration information, naming, providing distributed synchronisation.

d) HTTP API: The messaging api.

e) Metadata store cluster: a distributed metadata store based on mongodB.
- **Schema support**: on-demand mechanism that enables a) the definition of the expected payload schema, b) the definition of the expected set of attributes and values and c) the validation for each message if the requirements are met and immediately notify the client.

- **Replicate messages on multiple topics**: republisher script that consumes and publishes messages for specific topics (ex. SITES).

**Architectural aspect**

- **Durability**: provide very high durability, and at-least-once delivery, by storing copies of the same message on multiple servers.

- **Scalability**: It can handle increases in load without noticeable degradation of latency or availability.

- **Latency**: A high-performance service that can serve more than 1 billion messages per year.

- **Availability**: it deals with different types of issues, gracefully failing over in a way that is unnoticeable to end-users. Failures can occur in hardware, in software, and due to load.

In addition, the Messaging Service has some components like:

- **Argo-ams-library**: a simple library to interact with the ARGO Messaging Service.

- **Argo-Auth**: Argo-authn is a new authentication service. This service provides the ability to different services to use alternative authentication mechanisms without having to store additional user info or implement new functionalities. The AUTH service holds various information about a service’s users, hosts, API s, etc. and leverages them to provide its functionality.

- **AMS metrics**: Metrics about the service and the usage.

**URLs**

- https://msgargo.grnet.gr
- http://argoeu.github.io/argo-messaging/

**Documentation**

- Presentation: ARGO-Messaging-Service-GRNET
- Documentation: http://argoeu.github.io/argo-messaging/
- Swagger API: https://api-doc.argo.grnet.gr/argo-messaging/

**API types and use-cases**

- **/projects/{PROJECT}**: handle projects
- **Manage users**
  - User registrations - handle user registrations
  - Users - handle user accounts and tokens
- **Topics**: topics are resources that can hold messages. Publishers (users/systems) can create topics on demand and name them (usually with names that make sense and express the class of messages delivered in the topic). A topic name must be scoped to a project.
  - Ideas as a Publisher
  - Manage Topics
  - [PUT] Create new topic
  - [DELETE] Delete topic
  - [GET] Get a topic
  - [GET] List Topics
  - [POST] Publish message/s to a topic
  - [POST] Modify ACL of a given topic
  - [GET] List ACL of a given topic
Subscriptions: A named resource representing the stream of messages from a single, specific topic, to be delivered to the subscribing application. A subscription name must be scoped to a project.

- Manage subscriptions
- [PUT] Create subscriptions
- [GET]: List all subscriptions under a specific topic
- [GET]: List all subscriptions
- [GET]: Get a subscription's list of authorised users
- [POST]: Modify ACL of a given subscription
- [DELETE]: Delete subscriptions
- [POST]: Modify ACK deadline
- [POST]: Pull messages from a subscription (consume)
- [POST]: Sending an ACK
- [POST]: Modify offsets
- [GET]: Get offset by timestamp
- [GET]: Subscription metrics
- [GET]: Get offsets
- [PUT]: Validate message
- [POST] Request to create push-enabled subscription
- [POST]: Manage subscriptions - verify ownership of a push endpoint
- [POST]: Modify push configuration

Schemas: Schemas is a resource that works with topics under a specific project by validating the published messages.

- [GET]: Retrieve a schema
- [GET]: Retrieve all available schemas
- [POST]: Create new schema
- [PUT]: Update schema
- [DELETE]: Delete schema
- [PUT]: Validate message

Metrics

- AMS metrics: AMS operational metrics
- Project metrics: related metrics for the specific project: e.g. the number of topics, subscriptions
- Topic metrics: related metrics for the specific topic: e.g. for the number of published messages

Use Cases

Accounting: Use of the messaging-as-a-transport layer for collecting accounting data from the sites. The accounting information is gathered from different collectors into a central accounting repository, where it is processed to generate statistical summaries that are available through the Accounting Portal. The software used for transferring accounting records (SSM) is using the Messaging System. The SSM publishes messages to predefined topics. It uses the AMS-library to connect to AMS and collect the accounting data.

EOSC-Future components expected to interact with this component

- EOSC Accounting
- EOSC Monitoring
6 Initial gap analysis

This section presents the current result of the gap analysis for the EOSC Core back-office. This analysis is currently in an initial phase. Indeed, as originally planned, it is expected to be completed by the end of 2021. Its outputs will be reported in the deliverable D4.2a/b - Back-Office Requirement Analysis (M9, December 2021). However, three key gaps were already identified and are reported here.

In this short report, we intend as a gap a lacking functionality (with respect to the requirements) of the Core Back-Office for which related development activities in the technical roadmaps were not defined yet. This can be due to multiple reasons, like the complexity of the problem that needs further analysis, the need for a consultation of stakeholders to find a consensus on an implementation plan, etc.

6.1 Virtual Access Metrics

One of the major gaps identified is the need to aggregate, exchange and visualise Virtual Access (VA) metrics between different e-infrastructures, service providers and INFRAEOSC-07 projects listed in the high-level technical roadmap. This suggests a requirement for a VA Metric Accounting system that can be satisfied through an adequate customisation of the EOSC Accounting function introduced. At the time of writing this deliverable, each INFRAEOSC-07 project defines and implements its own mechanism/methodology for the collection of VA Metrics. A task force (including representatives from INFRAEOSC-07 projects would therefore be established to design the appropriate architecture which will produce the following outputs:

- Define VA Accounting record format:
  - Should likely hold as a minimum: KPIs, description/definition of the KPIs, time period, service type, service endpoint, service provider;
  - Should be in a machine-readable format (e.g. JSON, XML).

- Define VA Accounting record aggregation methodology:
  - Define the minimum/maximum aggregation period;
  - Define aggregation method;
  - Define comparison/validation method.

- Define VA Accounting Transport/ API Architecture:
  - Should be able to accept input from a number of different sources (e.g. all INFRAEOSC-07 projects);
  - Should be able to offer VA accounting records to a number of different clients - dashboards (external or internal).

- Define VA accounting storage and analysis mechanism:
  - Should be scalable;
  - Should make basic associations between metrics and providers.

- Define a presentation layer for the VA accounting for:
  - Service providers;
  - EC/projects/officials;
  - Consumers.

- Define who are the VA Metrics ‘consumers’;
- Describe possible extensions/correlations with the order management.

6.2 Topology and Configuration Management Database

Some of the EOSC Core Back-Office components (e.g. monitoring, service accounting, order management) need information about EOSC topology to properly operate. An analysis is underway to agree on a way to represent the topology for both EOSC Core and EOSC Exchange services and to select a component, acting as a Configuration Management DataBase (CMDB), where this information is stored.
6.3 Composability and execution framework

As reported in Section 3, composability is still an open topic, and there are many ongoing analyses to understand how to make it possible in EOSC. After the agreement on a clear definition of the composition for EOSC, the design work to introduce an EOSC execution framework, allowing users to combine and orchestrate multiple EOSC services, will start.
7 Conclusion and Next Steps

This document presented the EOSC Core Back-Office platform functional specifications.

The functional architecture presented here was derived from requirements collected until now and from the high-level technical roadmap. The identified Enabling Functional Components in the functional architecture were mapped to a series of background components developed in past EOSC projects (EOSC Enhance, EOSC-hub, OpenAIRE Advance).

The technical architecture was designed to connect and integrate all these background components into a homogeneous and coherent platform. Technical roadmaps were defined for each component to fill in the identified gaps and perform integrations with other components.

These architectures should be considered the starting point of the EOSC Future work to deliver the EOSC Core Back-Office. Indeed they will be matured during the project’s execution taking into account further requirements collected and feedback on the operations of the Core Back-Office platform.

As a result of this process, final specifications will be delivered before the end of the project and will be presented in the deliverable D4.1b Back-Office design, functional and technical specifications (M24, March 2023).
References

[1] EOSC-hub D10.5 - Requirements and gap analysis report [online] Available at: <https://www.eosc-hub.eu/deliverable/d105-requirements-and-gap-analysis-report>


[4] EOSC Enhance D1.5 - EOSC Portal requirements (release 1) [online] Available at: https://eosc-portal.eu/eosc-enhance-deliverables

[5] EOSC Enhance D1.6 - EOSC Portal requirements (release 2) [online] Available at: https://eosc-portal.eu/eosc-enhance-deliverables