

The EOSC Future Science Project 'Climate Neutral and Smart Cities': Integrating data from different clusters

Hilde Orten, Sikt - Norwegian Agency for Shared Services in Education and Research

EOSC Future webinar May 16 2023

The EOSC Future project is co-funded by the European Union Horizon Programme call INFRAEOSC-03-2020, Grant Agreement 101017536

EOSC Future

T6.3 Science Project 9, Climate Neutral and Smart Cities

Objectives:

- Demonstrate that relevant environmental data and data on citizens' values, attitudes, behavior and involvement can be combined for social, political and scientific analysis
- Data available via the EOSC Platform

Cross-cluster partners:

- SSHOC: ESS Eric (City University of London; Sikt), CESSDA (SND)
- ENVRI Community: IAGOS
- Project independent experts

Problem statement

- High level: Man in his/her environmental context
- More specifically for this project:

Do observable indicators related to climate change or local air pollution, have effect on attitudes to climate change or affect on well-being indicators?

Science Project 9, Climate Neutral and Smart Cities

Three pilars

Indicator production and data integration

ESS Data Climate data Air quality data

Cross-Domain metadata

DDI Cross-Domain integration use together with DDI-Lifecycle

Dissemination

ESS Context lab EOSC Portal

Indicator production and data integration

Climatedata from ERA5

Name	Long Name	Туре
🔻 😂 adapto	adaptor.mars.i	Local File
6 fg 10	10 metre wind	Geo2D
🥥 lati	latitude	-
🥥 lon	longitude	1D
🥥 t2m	2 metre temper	Geo2D
🥥 time	time	1D
🥥 tp	Total precipitation	Geo2D

Indicator production

Data from the European Social Survey for a selection of European cities

Air quality data from EEA

Sample	✓ AirPoll ✓	AirPollutantCode	Y Aver Y	Concentration	Unit0 ~
SAM.CZ_ABRAA_PM10_40270	PM10	http://dd.eionet.europa.eu/vocabulary/aq/pollutant/5	hour	103.000000000	µg/m3
SAM.CZ_ABRAA_PM10_40270	PM10	http://dd.eionet.europa.eu/vocabulary/aq/pollutant/5	hour	92.000000000	µg/m3
SAM.CZ_ABRAA_PM10_40270	PM10	http://dd.eionet.europa.eu/vocabulary/aq/pollutant/5	hour	102.000000000	µg/m3
SAM.CZ_ABRAA_PM10_40270	PM10	http://dd.eionet.europa.eu/vocabulary/aq/pollutant/5	hour	100.000000000	µg/m3
SAM.CZ_ABRAA_PM10_40270	PM10	http://dd.eionet.europa.eu/vocabulary/aq/pollutant/5	hour	86.000000000	µg/m3
SAM.CZ_ABRAA_PM10_40270	PM10	http://dd.eionet.europa.eu/vocabulary/aq/pollutant/5	hour	64.0000000000	µg/m3
SAM.CZ_ABRAA_PM10_40270	PM10	http://dd.eionet.europa.eu/vocabulary/aq/pollutant/5	hour	55.000000000	µg/m3
SAM.CZ_ABRAA_PM10_40270	PM10	http://dd.eionet.europa.eu/vocabulary/aq/pollutant/5	hour	48.000000000	µg/m3

Data integration

Example indicator production

aqiwdpm10	Worst air quality index level	This variable captures the worst
	PM10, date	air quality index level for PM10
		(Particles less than 10 µm
		(PM10), background stations by
		date and region

Computation rules

Compute target variable 'aqiwdpm10' starting from variables 'Concentration' and 'AirPollutant = PM10' for each background station. Compute where 'AirQualityStation' has values for the pollutant. Find 'Concentration' value at the 99th percentile for the pollutant. Create EEA Air Quality Index where PM10: 0 to 20 eq 'Good' represented by value '0'; 20 to 40 eq 'Fair' represented by value '1'; 40 to 50 eq 'Moderate' represented by value '2'; 50 to 100 eq 'Poor' represented by value '3'; 100 to 150 eq 'Very Poor' represented by value '4'; 150 to 1200 eq 'Extremely poor' represented by value '5'. The worst air quality level measured on a specific date on one of the background stations in the region provides values to the variable.

Cross-Domain metadata

Document process steps in a machine readable way to enhance transparency and FAIR practices using open standards

Document data integration steps in DDI-Cross Domain Integration (CDI)

Example in DDI-CDI provenance application prototype

SP9 ESS Labs » SP9 Process Description

Integrate climate and air quality data with ESS

Go

Quick search

Table of Contents

SP9 Process Description

Prototype

Main Sequence of the process

ProcessingAgent: Processing Agent 1 Purpose: Purpose of the processing agent Production environment: Sikt - Norwegian Agency for Shared Services in Education and Research acting as a participant of SP9

- Integrate climate and air quality data with ESS
 - ERA5 Data (Copernicus)
 - Get raw input
 - Marshalling data
 - Data Processing
 - EEA Air Quality
 - Get raw input
 Marshalling data
 - Marshalling data
 Data Processing
 - Creating date variable
 - aqiwdpm10
 - Merging data
 - Merging of ERA 5, EEA and ESS data

Note: Move the mouse cursor over a name to see more information. Click on a name to go to the corresponding page.

Example in DDI-CDI provenance application prototype, ctd.

Example in DDI-CDI provenance application prototype, ctd.

Metadata allowing reuse and reproducibility

Exploring possibilities DDI-Cross-Domain Integration (DDI-CDI)

- Provenance
- Description of data from different structures
- Catalogue details
- Variable cascade
- Use together with other standards for example DDI-Lifecycle

Dissemination

- ESS Labs prototype application with this project as its first instance.
- Starting from ESS Data Portal technology
- Add DDI-CDI based provenance components
- EOSC Portal
 - Add ESS Labs as a service
 - European Social Survey <u>ESS</u> allready onboarded

Thanks to

- Eric Harrison (ESS HQ City University of London)
- Eirik Stavestrand, Hanna Thome Grieg, Benjamin Beuster, Archana Bidargaddi (Sikt)
- Joachim Wackerow, Arofan Gregory (Consultants for Sikt)
- Iris Alfredsson, David Rayner, Ilse Laze (SND)
- Hannah Clark (IAGOS)
- Experst from NILU and the Norwegian Meteorological Institute
- Thanks to EOSC Future and the WP6 lead for making this possible

Thank you very much for your attention!

hilde.orten@sikt.no

Appendix

Identified environmental indicators and indices

Concept	Indicator	Indices (computed measures)	
Climate change (observable properties)	Temperature	Temperature anomaly	
	Precipitation	Extreme precipitation days	
	Wind strength	Storm – extreme wind	
Air quality (classic indicators)	Inhalable particular matter (PM10, PM2,5)	Air QualityDay of interview	
	Nitrogen Dioxide (NO2)	 Week before the interview 	
	Sulfur Dioxide (SO2)	• Month etc.	
	Ozone (ground –level) (O3)		

Data sources for Air Quality and Climate Data

Data source	Data source name	Reference (URL)	Comment
Air quality	European Environmental Agency (EEA)	https://www.eea.e uropa.eu/	Air quality indicator data, by hour
Climate indicators	Copernicus ERA5	https://www.ecmw f.int/en/forecasts/d atasets/reanalysis- datasets/era5	Re-analyses climate data, by hour

Geographic regions to be covered*

Urban region NUTS level + ESS var Domicile = 'big city', 'suburb' or 'outskirt of big city'	N in ESS Round 8 2016
Stockholm (SE11 Stockholms län)	246
Berlin (DE3 Berlin)	125
Praha (CZ010 Hlavní mesto Praha)	277
Budapest (HU110 Budapest)	291
Wien (AT13 Wien)	398
Madrid (ES30 Comunidad de Madrid)	167
Bruxelles/ Brussels (BE10 Région de Bruxelles-Capitale /Brussels	182
Hoofdstedelijk Gewest)	
London (UKI London)	143
Oslo (NO01 Oslo og Akershus)?	251

Methods for data integration

- Reduce amount of data
 - Climate data cover hourly measures for the whole world since many decades past

- Geomapping
 - NUTS polygons, grids and measurement station geopoints need to be combined
 - Mapping to common projection
 - Use Geostat population data to weight measures within areas
- Time
 - Relate all indicators to the timing of the interview
 - Compute variable 'Date' to relate events and indices to each other
 - Include data from back in time for normalisation purposes
- Indicator production and measures
 - Input from climate and air quality experts to learn about best practices.

Expected data users

- 1) Social and behavioral scientists (immediate term)
- 2) Policy makers (medium or long term)
- 3) Researchers from other domains (Environmental scientists)(medium or long term)

