

Providing KappaMask-based cloud and cloud segmentation masks for every Sentinel-2 product over Europe

Tetiana Shtym with contributions from the KappaZeta team

tetiana.shtym@kappazeta.ee

"Use cases from the EOSC community", 16th May 2023

Overview of use case

Overview of use case

Comparison to other cloudmasks on the KappaSet test set

True Color Image

Label

KappaMask L1C

MAJA

Sen2Cor

Time comparison (in minutes) performed on the single Sentinel-2 Level-1C product inference. KappaMaskv2 L1C with GPU and CPU, Sen2Cor, Fmask and S2Cloudless on generating a 10 m resolution classification map. IdePix classification map is at 20 m resolution. Sen2Cor's 20m classification mask was resampled to 10 m.

	KappaMaskv2 GPU	KappaMaskv2 CPU	Sen2Cor v2.10	Fmask	IdePix Without cloud shadow processing	S2Cloudless
Running time	02:58	06:01	05:50	06:10	16:53	18:10

Test computer:

CPU - Intel Core i7-8700K, 64GB of RAM, GPU - NVIDIA GeForce GTX 1070 with 8GB of VRAM, Linux Ubuntu 18.04.5 LTS (Bionic Beaver)

Overview of use case

- KappaMask is an AI-based cloud and cloud shadow processor for Sentinel-2.
- KappaMask has outperformed other cloud masks (e.g. Fmask, Sen2Cor, IdePix, S2Cloudless and MAJA) on the diverse and challenging test set.

By generating KappaMask-based cloud and cloud shadow segmentation mask for every Sentinel-2 product available in the European region and hosting the masks on CreoDIAS with a free licence, we provide ample opportunities for testing KappaMask performance for all interested parties.

Read more here:

https://kappazeta.ee/blog/mak e-the-globe-cloud-free-withkappamaskv2

Sentinel-2 Level-1C or Level-2A product resampled to 10m resolution

Cloud mask at 10 m resolution

Computing KappaMasks at CreoDIAS

- Architecture is a simple Python-RQ based task
 - worker scheme
- Easy to distribute processing steps between
- Can avoid back-pressure
- Multiple parallel processes for some steps
- Workers run in Docker

CreoDIAS user experience

- We received a dedicated project environment in OpenStack.
- Setting up virtual machines, IP address, volumes, etc is straightforward.
- Very comfortable to have a network predefined for accessing Sentinel data – virtual machines have all mounted by default.

Access		
~	Compute	
verview	Ov	
stances	Ins	
Images	1	
y Pairs	Ke	
Groups	Server (
>	Volumes	
>	Container Infra	
>	Network	
>	Orchestration	
>	DNS	
>	Object Store	
>	Share	
,	dentity	

Dialas

Results

- ~ 52 GB

• **30389** Sentinel-2 products processed starting from January

Conclusions

- Utilized an OpenStack project with pre-configured networks for seamless access to necessary input data.
- Benefited from flexible computing resources, allowing for efficient processing.
- Engaged in discussions with CESNET to store the final product using STAC metadata, ensuring accessibility to third parties.

Conclusions

- Utilized an OpenStack project with pre-configured networks for seamless access to necessary input data.
- Benefited from flexible computing resources, allowing for efficient processing.
- Engaged in discussions with CESNET to store the final product using STAC metadata, ensuring accessibility to third parties.

Contact

- Tetiana Shtym
- tetiana.shtym@kappazeta.ee

Conclusions

- Utilized an OpenStack project with pre-configured networks for seamless access to necessary input data.
- Benefited from flexible computing resources, allowing for efficient processing.
- Engaged in discussions with CESNET to store the final product using STAC metadata, ensuring accessibility to third parties.

Contact

- Tetiana Shtym
- tetiana.shtym@kappazeta.ee

